Bessette Lily G, Singer Daniel E, Pawar Ajinkya, Wong Vincent, Kim Dae Hyun, Lin Kueiyu Joshua
Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Clin Epidemiol. 2024 Apr 17;16:267-279. doi: 10.2147/CLEP.S438013. eCollection 2024.
High risk of intracranial hemorrhage (ICH) is a leading reason for withholding anticoagulation in patients with atrial fibrillation (AF). We aimed to develop a claims-based ICH risk prediction model in older adults with AF initiating oral anticoagulation (OAC).
We used US Medicare claims data to identify new users of OAC aged ≥65 years with AF in 2010-2017. We used regularized Cox regression to select predictors of ICH. We compared our AF ICH risk score with the HAS-BLED bleed risk and Homer fall risk scores by area under the receiver operating characteristic curve (AUC) and assessed net reclassification improvement (NRI) when predicting 1-year risk of ICH.
Our study cohort comprised 840,020 patients (mean [SD] age 77.5 [7.4] years and female 52.2%) split geographically into training (3963 ICH events [0.6%] in 629,804 patients) and validation (1397 ICH events [0.7%] in 210,216 patients) sets. Our AF ICH risk score, including 50 predictors, had superior AUCs of 0.653 and 0.650 in the training and validation sets than the HAS-BLED score of 0.580 and 0.567 (<0.001) and the Homer score of 0.624 and 0.623 (p<0.001). In the validation set, our AF ICH risk score reclassified 57.8%, 42.5%, and 43.9% of low, intermediate, and high-risk patients, respectively, by HAS-BLED score (NRI: 15.3%, <0.001). Similarly, it reclassified 0.0, 44.1, and 19.4% of low, intermediate, and high-risk patients, respectively, by the Homer score (NRI: 21.9%, <0.001).
Our novel claims-based ICH risk prediction model outperformed the standard HAS-BLED score and can inform OAC prescribing decisions.
颅内出血(ICH)的高风险是房颤(AF)患者停用抗凝治疗的主要原因。我们旨在开发一种基于索赔数据的ICH风险预测模型,用于开始口服抗凝治疗(OAC)的老年房颤患者。
我们使用美国医疗保险索赔数据,识别出2010 - 2017年年龄≥65岁且患有房颤的OAC新使用者。我们使用正则化Cox回归来选择ICH的预测因子。我们通过受试者操作特征曲线(AUC)下的面积,将我们的房颤ICH风险评分与HAS - BLED出血风险评分和荷马跌倒风险评分进行比较,并在预测1年ICH风险时评估净重新分类改善(NRI)。
我们的研究队列包括840,020名患者(平均[标准差]年龄77.5[7.4]岁,女性占52.2%),按地理位置分为训练集(629,804名患者中有3963例ICH事件[0.6%])和验证集(210,216名患者中有1397例ICH事件[0.7%])。我们的房颤ICH风险评分包括50个预测因子,在训练集和验证集中的AUC分别为0.653和0.650,优于HAS - BLED评分的0.580和0.567(<0.001)以及荷马评分的0.624和0.623(p<0.001)。在验证集中,我们的房颤ICH风险评分分别将HAS - BLED评分定义的低、中、高风险患者中的57.8%、42.5%和43.9%重新分类(NRI:15.3%,<0.001)。同样,它分别将荷马评分定义的低、中、高风险患者中的0.0%、44.1%和19.4%重新分类(NRI:21.9%,<0.001)。
我们新的基于索赔数据的ICH风险预测模型优于标准的HAS - BLED评分,可为OAC处方决策提供参考。