Giuliani Alessandro
Environment and Health Department, Istituto Superiore di Sanità, Roma, Italy.
Drug Discov Today. 2017 Jul;22(7):1069-1076. doi: 10.1016/j.drudis.2017.01.005. Epub 2017 Jan 19.
There is a neat distinction between general purpose statistical techniques and quantitative models developed for specific problems. Principal Component Analysis (PCA) blurs this distinction: while being a general purpose statistical technique, it implies a peculiar style of reasoning. PCA is a 'hypothesis generating' tool creating a statistical mechanics frame for biological systems modeling without the need for strong a priori theoretical assumptions. This makes PCA of utmost importance for approaching drug discovery by a systemic perspective overcoming too narrow reductionist approaches.
通用统计技术与针对特定问题开发的定量模型之间存在明确的区别。主成分分析(PCA)模糊了这种区别:虽然它是一种通用统计技术,但它暗示了一种独特的推理方式。PCA是一种“假设生成”工具,可为生物系统建模创建统计力学框架,而无需强大的先验理论假设。这使得PCA对于从系统角度克服过于狭隘的还原论方法来进行药物发现极为重要。