Suppr超能文献

欧洲网格化降水观测中的不确定性对区域气候分析的影响。

Impacts of uncertainties in European gridded precipitation observations on regional climate analysis.

作者信息

Prein Andreas F, Gobiet Andreas

机构信息

MMM: Mesoscale & Microscale Meteorology Laboratory and Research Applications Laboratory National Center for Atmospheric Research (NCAR) Boulder CO USA; Wegener Center for Climate and Global Change University of Graz Graz Austria.

Wegener Center for Climate and Global Change University of Graz Graz Austria; Avalanche warning service Central Institute for Meteorology and Geodynamics (ZAMG) Graz Austria.

出版信息

Int J Climatol. 2017 Jan;37(1):305-327. doi: 10.1002/joc.4706. Epub 2016 Mar 20.

Abstract

Gridded precipitation data sets are frequently used to evaluate climate models or to remove model output biases. Although precipitation data are error prone due to the high spatio-temporal variability of precipitation and due to considerable measurement errors, relatively few attempts have been made to account for observational uncertainty in model evaluation or in bias correction studies. In this study, we compare three types of European daily data sets featuring two Pan-European data sets and a set that combines eight very high-resolution station-based regional data sets. Furthermore, we investigate seven widely used, larger scale global data sets. Our results demonstrate that the differences between these data sets have the same magnitude as precipitation errors found in regional climate models. Therefore, including observational uncertainties is essential for climate studies, climate model evaluation, and statistical post-processing. Following our results, we suggest the following guidelines for regional precipitation assessments. (1) Include multiple observational data sets from different sources (e.g. station, satellite, reanalysis based) to estimate observational uncertainties. (2) Use data sets with high station densities to minimize the effect of precipitation undersampling (may induce about 60% error in data sparse regions). The information content of a gridded data set is mainly related to its underlying station density and not to its grid spacing. (3) Consider undercatch errors of up to 80% in high latitudes and mountainous regions. (4) Analyses of small-scale features and extremes are especially uncertain in gridded data sets. For higher confidence, use climate-mean and larger scale statistics. In conclusion, neglecting observational uncertainties potentially misguides climate model development and can severely affect the results of climate change impact assessments.

摘要

网格化降水数据集经常被用于评估气候模型或消除模型输出偏差。尽管由于降水的高时空变异性以及相当大的测量误差,降水数据容易出错,但在模型评估或偏差校正研究中,考虑观测不确定性的尝试相对较少。在本研究中,我们比较了三种类型的欧洲日数据集,包括两个泛欧洲数据集以及一个由八个基于高分辨率站点的区域数据集组合而成的数据集。此外,我们还研究了七个广泛使用的、更大尺度的全球数据集。我们的结果表明,这些数据集之间的差异与区域气候模型中发现的降水误差幅度相同。因此,考虑观测不确定性对于气候研究、气候模型评估和统计后处理至关重要。根据我们的结果,我们为区域降水评估提出以下指导方针。(1)纳入来自不同来源(如站点、卫星、再分析)的多个观测数据集,以估计观测不确定性。(2)使用具有高站点密度的数据集,以尽量减少降水采样不足的影响(在数据稀疏地区可能会导致约60%的误差)。网格化数据集的信息含量主要与其基础站点密度有关,而与其网格间距无关。(3)考虑高纬度和山区高达80%的截留误差。(4)在网格化数据集中,对小尺度特征和极端情况进行分析尤其不确定。为了获得更高的可信度,应使用气候平均值和更大尺度的统计数据。总之,忽略观测不确定性可能会误导气候模型的发展,并可能严重影响气候变化影响评估的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fb2/5214405/bb92e4895ce4/JOC-37-305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验