Hatfield Laura A, Baugh Christine M, Azzone Vanessa, Normand Sharon-Lise T
Department of Health Care Policy, Harvard Medical School, Boston, MA, USA (LAH, VA).
Interfaculty Initiative in Health Policy, Harvard University, Cambridge, MA, USA (CMB).
Med Decis Making. 2017 Jul;37(5):512-522. doi: 10.1177/0272989X16686767. Epub 2017 Jan 23.
Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate.
To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making.
In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals.
The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified.
Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging.
A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.
当有证据表明医疗设备存在安全问题时,监管机构必须采取行动保护公众。这需要在风险和收益之间进行复杂的权衡,而传统的安全监测方法并未纳入这些权衡因素。
将明确的监管机构损失函数与医疗设备安全信号的统计证据相结合,以改善决策。
在“医院成本与利用项目国家住院样本”中,我们选择儿科住院病例并识别不良医疗设备事件(AMDE)。我们将分层贝叶斯模型应用于年度医院层面的AMDE发生率,并考虑患者和医院特征。这些模型产生预期的AMDE发生率(一个安全目标),我们将测试年份中观察到的发生率与之比较以计算安全信号。我们指定一组损失函数,将每个行动的成本和收益量化为安全信号的函数。我们在安全信号的后验分布上对损失函数进行积分以获得后验(贝叶斯)风险;首选行动具有最小的贝叶斯风险。通过模拟和对AMDE数据的分析,我们将最小风险决策与用于对安全信号进行分类的传统Z评分方法进行比较。
对于近一半的医院(45%),这两种规则产生了不同的行动。在模拟中,即使损失函数或分层模型指定错误,使贝叶斯风险最小化的决策也优于基于Z评分的决策。
我们的方法对损失函数的选择敏感;从监管机构获取损失函数的定量输入具有挑战性。
基于决策理论的方法对安全信号采取行动可能很有前景,但需要与主题专家协商仔细指定损失函数。