Suppr超能文献

用于三维网格上具有结构保持的无监督特征学习的网格卷积受限玻尔兹曼机。

Mesh Convolutional Restricted Boltzmann Machines for Unsupervised Learning of Features With Structure Preservation on 3-D Meshes.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2268-2281. doi: 10.1109/TNNLS.2016.2582532. Epub 2016 Jun 30.

Abstract

Discriminative features of 3-D meshes are significant to many 3-D shape analysis tasks. However, handcrafted descriptors and traditional unsupervised 3-D feature learning methods suffer from several significant weaknesses: 1) the extensive human intervention is involved; 2) the local and global structure information of 3-D meshes cannot be preserved, which is in fact an important source of discriminability; 3) the irregular vertex topology and arbitrary resolution of 3-D meshes do not allow the direct application of the popular deep learning models; 4) the orientation is ambiguous on the mesh surface; and 5) the effect of rigid and nonrigid transformations on 3-D meshes cannot be eliminated. As a remedy, we propose a deep learning model with a novel irregular model structure, called mesh convolutional restricted Boltzmann machines (MCRBMs). MCRBM aims to simultaneously learn structure-preserving local and global features from a novel raw representation, local function energy distribution. In addition, multiple MCRBMs can be stacked into a deeper model, called mesh convolutional deep belief networks (MCDBNs). MCDBN employs a novel local structure preserving convolution (LSPC) strategy to convolve the geometry and the local structure learned by the lower MCRBM to the upper MCRBM. LSPC facilitates resolving the challenging issue of the orientation ambiguity on the mesh surface in MCDBN. Experiments using the proposed MCRBM and MCDBN were conducted on three common aspects: global shape retrieval, partial shape retrieval, and shape correspondence. Results show that the features learned by the proposed methods outperform the other state-of-the-art 3-D shape features.

摘要

三维网格的鉴别特征对于许多三维形状分析任务都非常重要。然而,手工制作的描述符和传统的无监督三维特征学习方法存在几个显著的弱点:1)涉及大量的人工干预;2)无法保留三维网格的局部和全局结构信息,而这实际上是可区分性的重要来源;3)三维网格的不规则顶点拓扑和任意分辨率不允许直接应用流行的深度学习模型;4)网格表面的方向不明确;5)刚性和非刚性变换对三维网格的影响无法消除。作为一种补救措施,我们提出了一种具有新颖不规则模型结构的深度学习模型,称为网格卷积受限玻尔兹曼机(MCRBM)。MCRBM 的目的是从一种新的原始表示(局部函数能量分布)中同时学习保结构的局部和全局特征。此外,多个 MCRBM 可以堆叠成更深的模型,称为网格卷积深度置信网络(MCDBN)。MCDBN 采用了一种新的局部结构保持卷积(LSPC)策略,将几何形状和较低 MCRBM 学习到的局部结构卷积到较高 MCRBM。LSPC 有助于解决 MCDBN 中网格表面方向不明确的挑战性问题。使用所提出的 MCRBM 和 MCDBN 进行了三个常见方面的实验:全局形状检索、部分形状检索和形状对应。结果表明,所提出的方法学习到的特征优于其他最先进的三维形状特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验