Suppr超能文献

步态事件的自动检测:一项使用归纳学习技术的案例研究。

Automatic detection of gait events: a case study using inductive learning techniques.

作者信息

Kirkwood C A, Andrews B J, Mowforth P

机构信息

Bioengineering Unit, University of Strathclyde, Glasgow, UK.

出版信息

J Biomed Eng. 1989 Nov;11(6):511-6. doi: 10.1016/0141-5425(89)90046-0.

Abstract

One of the problems which occurs in the development of a control system for functional electrical stimulation of the lower limbs is to detect accurately specific events within the gait cycle. We present a method for the classification of phases of the gait cycle using the artificial intelligence technique of inductive learning. Both the terminology of inductive learning and the algorithm used for the analyses are fully explained. Given a set of examples of sensor data from the gait events that are to be detected, the inductive learning algorithm is able to produce a decision tree (or set of rules) which classify the data using a minimum number of sensors. The nature of the redundancy of the sensor set is examined by progressively removing combinations of sensors and noting the effect on both the size of the decision trees produced and their classification accuracy on 'unseen' testing data. Since the algorithm is able to calculate which sensors are more important (informative), comparisons with the intuitive appreciation of sensor importance of five researchers in the fields were made, revealing that those sensors which appear intuitively most informative may, in fact, provide the least information. Comparison results with the standard statistical classification technique of linear discriminant analysis are also presented, showing the relative simplicity of the inductively derived rules together with their good classification accuracy. In addition to the control of FES, such techniques are also applicable to automatic gait analysis and the construction of expert systems for diagnosis of gait pathologies.

摘要

下肢功能性电刺激控制系统开发过程中出现的问题之一是准确检测步态周期内的特定事件。我们提出了一种利用归纳学习人工智能技术对步态周期各阶段进行分类的方法。文中对归纳学习的术语和用于分析的算法都进行了充分解释。给定一组来自待检测步态事件的传感器数据示例,归纳学习算法能够生成决策树(或规则集),该决策树(或规则集)使用最少数量的传感器对数据进行分类。通过逐步去除传感器组合并记录其对生成的决策树大小及其对“未见过的”测试数据的分类准确性的影响,来研究传感器集冗余的性质。由于该算法能够计算出哪些传感器更重要(信息量更大),因此与该领域五位研究人员对传感器重要性的直观判断进行了比较,结果表明,那些直观上看起来信息量最大的传感器实际上可能提供的信息最少。文中还给出了与线性判别分析这一标准统计分类技术的比较结果,展示了归纳得出的规则相对简单且分类准确性良好。除了用于功能性电刺激的控制外,此类技术还适用于自动步态分析以及步态病理学诊断专家系统的构建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验