Suppr超能文献

高光谱图像的同时谱-空特征选择与提取。

Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images.

出版信息

IEEE Trans Cybern. 2018 Jan;48(1):16-28. doi: 10.1109/TCYB.2016.2605044. Epub 2016 Sep 12.

Abstract

In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature, and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation has not efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient.

摘要

在高光谱遥感数据挖掘中,同时考虑光谱和空间信息(如光谱特征、纹理特征和形态特征)非常重要,以提高性能,例如图像分类精度。从特征表示的角度来看,一种自然的处理这种情况的方法是将光谱和空间特征连接成一个单一的但高维向量,然后在将其馈送到后续分类器之前直接对连接的向量应用某种降维技术。然而,来自不同领域的多个特征肯定具有不同的物理意义和统计属性,因此这种连接并没有有效地挖掘不同特征之间的互补特性,这应该有助于提高特征的可辨别性。此外,连接向量的变换结果也很难解释。因此,找到原始多个特征的物理意义上一致的低维特征表示仍然是一项具有挑战性的任务。为了解决这些问题,我们提出了一种新的特征学习框架,即同时的光谱-空间特征选择和提取算法,用于高光谱图像的光谱-空间特征表示和分类。具体来说,所提出的方法通过将光谱-空间特征投影到公共特征空间中来学习潜在的低维子空间,在该空间中,有效利用了互补信息,同时仅转换了最重要的原始特征。在三个公开可用的高光谱遥感数据集上的令人鼓舞的实验结果证实了我们所提出的方法的有效性和高效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验