Suppr超能文献

利用微观高光谱成像和基于张量补丁的判别线性回归进行膜性肾病分类

Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression.

作者信息

Lv Meng, Chen Tianhong, Yang Yue, Tu Tianqi, Zhang Nianrong, Li Wenge, Li Wei

机构信息

School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China.

Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China.

出版信息

Biomed Opt Express. 2021 Apr 28;12(5):2968-2978. doi: 10.1364/BOE.421345. eCollection 2021 May 1.

Abstract

Optical kidney biopsy, serological examination, and clinical symptoms are the main methods for membranous nephropathy (MN) diagnosis. However, false positives and undetectable biochemical components in the results of optical inspections lead to unsatisfactory diagnostic sensitivity and pose obstacles to pathogenic mechanism analysis. In order to reveal detailed component information of immune complexes of MN, microscopic hyperspectral imaging technology is employed to establish a hyperspectral database of 68 patients with two types of MN. Based on the characteristic of the medical HSI, a novel framework of tensor patch-based discriminative linear regression (TDLR) is proposed for MN classification. Experimental results show that the classification accuracy of the proposed model for MN identification is 98.77%. The combination of tensor-based classifiers and hyperspectral data analysis provides new ideas for the research of kidney pathology, which has potential clinical value for the automatic diagnosis of MN.

摘要

光学肾活检、血清学检查和临床症状是膜性肾病(MN)诊断的主要方法。然而,光学检查结果中的假阳性和无法检测到的生化成分导致诊断敏感性不尽人意,并对致病机制分析造成障碍。为了揭示MN免疫复合物的详细成分信息,采用显微高光谱成像技术建立了68例两种类型MN患者的高光谱数据库。基于医学高光谱成像(HSI)的特点,提出了一种基于张量补丁的判别线性回归(TDLR)新框架用于MN分类。实验结果表明,所提出模型用于MN识别的分类准确率为98.77%。基于张量的分类器与高光谱数据分析相结合,为肾脏病理学研究提供了新思路,对MN的自动诊断具有潜在的临床价值。

相似文献

5
Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery.基于判别张量的医学高光谱图像流形嵌入。
IEEE J Biomed Health Inform. 2021 Sep;25(9):3517-3528. doi: 10.1109/JBHI.2021.3065050. Epub 2021 Sep 3.
7
Tumor tissue classification based on micro-hyperspectral technology and deep learning.基于显微高光谱技术和深度学习的肿瘤组织分类
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.

引用本文的文献

2
Intelligent tumor tissue classification for Hybrid Health Care Units.混合医疗保健单位的智能肿瘤组织分类
Front Med (Lausanne). 2024 Jun 26;11:1385524. doi: 10.3389/fmed.2024.1385524. eCollection 2024.

本文引用的文献

2
Tumor tissue classification based on micro-hyperspectral technology and deep learning.基于显微高光谱技术和深度学习的肿瘤组织分类
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.
5
Hyperspectral index-based metric for burn depth assessment.基于高光谱指数的烧伤深度评估指标
Biomed Opt Express. 2018 Oct 26;9(11):5778-5791. doi: 10.1364/BOE.9.005778. eCollection 2018 Nov 1.
6
Marginal Representation Learning With Graph Structure Self-Adaptation.具有图结构自适应的边际表示学习
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4645-4659. doi: 10.1109/TNNLS.2017.2772264. Epub 2017 Dec 4.
7
Detecting brain tumor in pathological slides using hyperspectral imaging.利用高光谱成像技术在病理切片中检测脑肿瘤。
Biomed Opt Express. 2018 Jan 25;9(2):818-831. doi: 10.1364/BOE.9.000818. eCollection 2018 Feb 1.
9
Inter-class sparsity based discriminative least square regression.基于类间稀疏性的判别最小二乘回归。
Neural Netw. 2018 Jun;102:36-47. doi: 10.1016/j.neunet.2018.02.002. Epub 2018 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验