Suppr超能文献

利用微观高光谱成像和基于张量补丁的判别线性回归进行膜性肾病分类

Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression.

作者信息

Lv Meng, Chen Tianhong, Yang Yue, Tu Tianqi, Zhang Nianrong, Li Wenge, Li Wei

机构信息

School of Information and Electronics, Beijing Institute of Technology, and Beijing Key Laboratory of Fractional Signals and Systems, Beijing 100081, China.

Department of Kidney Disease, China-Japan Friendship Hospital, Beijing 100029, China.

出版信息

Biomed Opt Express. 2021 Apr 28;12(5):2968-2978. doi: 10.1364/BOE.421345. eCollection 2021 May 1.

Abstract

Optical kidney biopsy, serological examination, and clinical symptoms are the main methods for membranous nephropathy (MN) diagnosis. However, false positives and undetectable biochemical components in the results of optical inspections lead to unsatisfactory diagnostic sensitivity and pose obstacles to pathogenic mechanism analysis. In order to reveal detailed component information of immune complexes of MN, microscopic hyperspectral imaging technology is employed to establish a hyperspectral database of 68 patients with two types of MN. Based on the characteristic of the medical HSI, a novel framework of tensor patch-based discriminative linear regression (TDLR) is proposed for MN classification. Experimental results show that the classification accuracy of the proposed model for MN identification is 98.77%. The combination of tensor-based classifiers and hyperspectral data analysis provides new ideas for the research of kidney pathology, which has potential clinical value for the automatic diagnosis of MN.

摘要

光学肾活检、血清学检查和临床症状是膜性肾病(MN)诊断的主要方法。然而,光学检查结果中的假阳性和无法检测到的生化成分导致诊断敏感性不尽人意,并对致病机制分析造成障碍。为了揭示MN免疫复合物的详细成分信息,采用显微高光谱成像技术建立了68例两种类型MN患者的高光谱数据库。基于医学高光谱成像(HSI)的特点,提出了一种基于张量补丁的判别线性回归(TDLR)新框架用于MN分类。实验结果表明,所提出模型用于MN识别的分类准确率为98.77%。基于张量的分类器与高光谱数据分析相结合,为肾脏病理学研究提供了新思路,对MN的自动诊断具有潜在的临床价值。

相似文献

1
Membranous nephropathy classification using microscopic hyperspectral imaging and tensor patch-based discriminative linear regression.
Biomed Opt Express. 2021 Apr 28;12(5):2968-2978. doi: 10.1364/BOE.421345. eCollection 2021 May 1.
2
Spatial-Spectral Density Peaks-Based Discriminant Analysis for Membranous Nephropathy Classification Using Microscopic Hyperspectral Images.
IEEE J Biomed Health Inform. 2021 Aug;25(8):3041-3051. doi: 10.1109/JBHI.2021.3050483. Epub 2021 Aug 5.
5
Discriminant Tensor-Based Manifold Embedding for Medical Hyperspectral Imagery.
IEEE J Biomed Health Inform. 2021 Sep;25(9):3517-3528. doi: 10.1109/JBHI.2021.3065050. Epub 2021 Sep 3.
6
Comparative analysis of membranous and other nephropathy subtypes and establishment of a diagnostic model.
Front Med. 2019 Oct;13(5):618-625. doi: 10.1007/s11684-018-0620-5. Epub 2018 Aug 10.
7
Tumor tissue classification based on micro-hyperspectral technology and deep learning.
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.
8
Spectral-Spatial Classification Using Tensor Modeling for Cancer Detection with Hyperspectral Imaging.
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034:903413. doi: 10.1117/12.2043796.
9
Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment.
IEEE Trans Neural Netw Learn Syst. 2015 Aug;26(8):1582-93. doi: 10.1109/TNNLS.2014.2339222. Epub 2014 Sep 12.

引用本文的文献

2
Intelligent tumor tissue classification for Hybrid Health Care Units.
Front Med (Lausanne). 2024 Jun 26;11:1385524. doi: 10.3389/fmed.2024.1385524. eCollection 2024.
3
Histological Hyperspectral Glioblastoma Dataset (HistologyHSI-GB).
Sci Data. 2024 Jun 24;11(1):681. doi: 10.1038/s41597-024-03510-x.
4
Nondestructive detection of strain degradation based on micro-hyperspectral imaging and machine learning.
Front Plant Sci. 2023 Dec 6;14:1260625. doi: 10.3389/fpls.2023.1260625. eCollection 2023.
5
SpeCamX: mobile app that turns unmodified smartphones into multispectral imagers.
Biomed Opt Express. 2023 Aug 25;14(9):4929-4946. doi: 10.1364/BOE.497602. eCollection 2023 Sep 1.
6
A Rehabilitation of Pixel-Based Spectral Reconstruction from RGB Images.
Sensors (Basel). 2023 Apr 21;23(8):4155. doi: 10.3390/s23084155.
8
On the Optimization of Regression-Based Spectral Reconstruction.
Sensors (Basel). 2021 Aug 19;21(16):5586. doi: 10.3390/s21165586.

本文引用的文献

1
Tumor detection of the thyroid and salivary glands using hyperspectral imaging and deep learning.
Biomed Opt Express. 2020 Feb 18;11(3):1383-1400. doi: 10.1364/BOE.381257. eCollection 2020 Mar 1.
2
Tumor tissue classification based on micro-hyperspectral technology and deep learning.
Biomed Opt Express. 2019 Nov 19;10(12):6370-6389. doi: 10.1364/BOE.10.006370. eCollection 2019 Dec 1.
3
Blood Cell Classification Based on Hyperspectral Imaging With Modulated Gabor and CNN.
IEEE J Biomed Health Inform. 2020 Jan;24(1):160-170. doi: 10.1109/JBHI.2019.2905623. Epub 2019 Mar 18.
4
Safety of Permanent Pacemaker Implantation: A Prospective Study.
J Clin Med. 2019 Jan 1;8(1):35. doi: 10.3390/jcm8010035.
5
Hyperspectral index-based metric for burn depth assessment.
Biomed Opt Express. 2018 Oct 26;9(11):5778-5791. doi: 10.1364/BOE.9.005778. eCollection 2018 Nov 1.
6
Marginal Representation Learning With Graph Structure Self-Adaptation.
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4645-4659. doi: 10.1109/TNNLS.2017.2772264. Epub 2017 Dec 4.
7
Detecting brain tumor in pathological slides using hyperspectral imaging.
Biomed Opt Express. 2018 Jan 25;9(2):818-831. doi: 10.1364/BOE.9.000818. eCollection 2018 Feb 1.
8
Diverse Region-Based CNN for Hyperspectral Image Classification.
IEEE Trans Image Process. 2018 Jun;27(6):2623-2634. doi: 10.1109/TIP.2018.2809606.
9
Inter-class sparsity based discriminative least square regression.
Neural Netw. 2018 Jun;102:36-47. doi: 10.1016/j.neunet.2018.02.002. Epub 2018 Feb 21.
10
Hyperspectral Imaging and K-Means Classification for Histologic Evaluation of Ductal Carcinoma .
Front Oncol. 2018 Feb 7;8:17. doi: 10.3389/fonc.2018.00017. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验