IEEE/ACM Trans Comput Biol Bioinform. 2017 Mar-Apr;14(2):491-497. doi: 10.1109/TCBB.2016.2544299. Epub 2016 Mar 21.
Comprehension of metabolic pathways is considerably enhanced by metabolic flux analysis (MFA-ILE) in isotope labeling experiments. The balance equations are given by hundreds of algebraic (stationary MFA) or ordinary differential equations (nonstationary MFA), and reducing the number of operations is therefore a crucial part of reducing the computation cost. The main bottleneck for deterministic algorithms is the computation of derivatives, particularly for nonstationary MFA. In this article, we explain how the overall identification process may be speeded up by using the adjoint approach to compute the gradient of the residual sum of squares. The proposed approach shows significant improvements in terms of complexity and computation time when it is compared with the usual (direct) approach. Numerical results are obtained for the central metabolic pathways of Escherichia coli and are validated against reference software in the stationary case. The methods and algorithms described in this paper are included in the sysmetab software package distributed under an Open Source license at http://forge.scilab.org/index.php/p/sysmetab/.
代谢通量分析(MFA-ILE)在同位素标记实验中极大地增强了对代谢途径的理解。平衡方程由数百个代数(稳态 MFA)或常微分方程(非稳态 MFA)给出,因此减少运算次数是降低计算成本的关键部分。对于确定性算法来说,主要的瓶颈是导数的计算,特别是对于非稳态 MFA。在本文中,我们将解释如何通过使用伴随方法来计算残差平方和的梯度来加速整体识别过程。与通常的(直接)方法相比,所提出的方法在复杂度和计算时间方面都有显著的改进。我们针对大肠杆菌的中心代谢途径获得了数值结果,并在稳态情况下与参考软件进行了验证。本文描述的方法和算法包含在 sysmetab 软件包中,该软件包以开源许可证的形式发布在 http://forge.scilab.org/index.php/p/sysmetab/ 上。