IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1489-1499. doi: 10.1109/TNSRE.2016.2634585. Epub 2016 Dec 1.
We demonstrate the interaction control capabilities of the MR-SoftWrist, a novel MR-compatible robot capable of applying accurate kinesthetic feedback to wrist pointing movements executed during fMRI. The MR-SoftWrist, based on a novel design that combines parallel piezoelectric actuation with compliant force feedback, is capable of delivering 1.5 N [Formula: see text] of torque to the wrist of an interacting subject about the flexion/extension and radial/ulnar deviation axes. The robot workspace, defined by admissible wrist rotation angles, fully includes a circle with a 20 deg radius. Via dynamic characterization, we demonstrate capability for transparent operation with low (10% of maximum torque output) backdrivability torques at nominal speeds. Moreover, we demonstrate a 5.5 Hz stiffness control bandwidth for a 14 dB range of virtual stiffness values, corresponding to 25%-125% of the device's physical reflected stiffness in the nominal configuration. We finally validate the possibility of operation during fMRI via a case study involving one healthy subject. Our validation experiment demonstrates the capability of the device to apply kinesthetic feedback to elicit distinguishable kinetic and neural responses without significant degradation of image quality or task-induced head movements. With this study, we demonstrate the feasibility of MR-compatible devices like the MR-SoftWrist to be used in support of motor control experiments investigating wrist pointing under robot-applied force fields. Such future studies may elucidate fundamental neural mechanisms enabling robot-assisted motor skill learning, which is crucial for robot-aided neurorehabilitation.
我们展示了 MR-SoftWrist 的交互控制能力,这是一种新型的兼容磁共振的机器人,能够在 fMRI 期间执行的手腕指向运动中提供精确的运动觉反馈。MR-SoftWrist 基于一种新颖的设计,结合了并联压电致动和柔顺力反馈,能够向交互主体的手腕提供关于屈伸和桡侧/尺侧偏轴的 1.5 N·m 的扭矩。机器人工作空间由允许的手腕旋转角度定义,完全包括一个半径为 20 度的圆。通过动态特性,我们证明了在标称速度下具有低(最大扭矩输出的 10%)背驱动力的透明操作能力。此外,我们展示了 5.5 Hz 的刚度控制带宽,用于 14 dB 范围内的虚拟刚度值,对应于设备在标称配置下的物理反射刚度的 25%-125%。最后,我们通过一项涉及一名健康受试者的案例研究验证了在 fMRI 期间操作的可能性。我们的验证实验证明了该设备能够施加运动觉反馈,以引起可区分的运动和神经响应,而不会显著降低图像质量或任务引起的头部运动。通过这项研究,我们证明了像 MR-SoftWrist 这样的兼容磁共振的设备在支持研究机器人施加力场下手腕指向的运动控制实验中的可行性。这些未来的研究可能阐明使机器人辅助运动技能学习成为可能的基本神经机制,这对于机器人辅助神经康复至关重要。