Suppr超能文献

一种磁共振兼容的气动操作器的设计与验证

Design and validation of a MR-compatible pneumatic manipulandum.

作者信息

Suminski Aaron J, Zimbelman Janice L, Scheidt Robert A

机构信息

Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53201-1881, USA.

出版信息

J Neurosci Methods. 2007 Jul 30;163(2):255-66. doi: 10.1016/j.jneumeth.2007.03.014. Epub 2007 Mar 30.

Abstract

The combination of functional MR imaging and novel robotic tools may provide unique opportunities to probe the neural systems underlying motor control and learning. Here, we describe the design and validation of a MR-compatible, 1 degree-of-freedom pneumatic manipulandum along with experiments demonstrating its safety and efficacy. We first validated the robot's ability to apply computer-controlled loads about the wrist, demonstrating that it possesses sufficient bandwidth to simulate torsional spring-like loads during point-to-point flexion movements. Next, we verified the MR-compatibility of the device by imaging a head phantom during robot operation. We observed no systematic differences in two measures of MRI signal quality (signal/noise and field homogeneity) when the robot was introduced into the scanner environment. Likewise, measurements of joint angle and actuator pressure were not adversely affected by scanning. Finally, we verified device efficacy by scanning 20 healthy human subjects performing rapid wrist flexions against a wide range of spring-like loads. We observed a linear relationship between joint torque at peak movement extent and perturbation magnitude, thus demonstrating the robot's ability to simulate spring-like loads in situ. fMRI revealed task-related activation in regions known to contribute to the control of movement including the left primary sensorimotor cortex and right cerebellum.

摘要

功能磁共振成像与新型机器人工具的结合可能为探究运动控制和学习背后的神经系统提供独特的机会。在此,我们描述了一种与磁共振兼容的单自由度气动操作器的设计与验证,并通过实验证明了其安全性和有效性。我们首先验证了该机器人在手腕周围施加计算机控制负载的能力,证明它在点对点屈曲运动期间具有足够的带宽来模拟扭转弹簧状负载。接下来,我们通过在机器人操作期间对头部模型进行成像来验证该设备的磁共振兼容性。当将机器人引入扫描仪环境时,我们在两种磁共振成像信号质量测量指标(信号/噪声和场均匀性)上未观察到系统差异。同样,关节角度和致动器压力的测量也不受扫描的不利影响。最后,我们通过扫描20名健康人类受试者在面对各种弹簧状负载时进行快速手腕屈曲来验证设备的有效性。我们观察到在运动峰值程度时的关节扭矩与扰动幅度之间存在线性关系,从而证明了该机器人在原位模拟弹簧状负载的能力。功能磁共振成像显示在已知有助于运动控制的区域,包括左初级感觉运动皮层和右小脑,出现了与任务相关的激活。

相似文献

1
Design and validation of a MR-compatible pneumatic manipulandum.
J Neurosci Methods. 2007 Jul 30;163(2):255-66. doi: 10.1016/j.jneumeth.2007.03.014. Epub 2007 Mar 30.
2
Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot.
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1489-1499. doi: 10.1109/TNSRE.2016.2634585. Epub 2016 Dec 1.
4
MRI-compatible pneumatic stimulator for sensorimotor mapping.
J Neurosci Methods. 2019 Feb 1;313:29-36. doi: 10.1016/j.jneumeth.2018.12.014. Epub 2018 Dec 19.
6
fMRI assessment of upper extremity related brain activation with an MRI-compatible manipulandum.
Int J Comput Assist Radiol Surg. 2011 May;6(3):447-55. doi: 10.1007/s11548-010-0525-5. Epub 2010 Aug 10.
7
Estimating anatomical wrist joint motion with a robotic exoskeleton.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1437-1442. doi: 10.1109/ICORR.2017.8009450.
9
Identifying brain regions for integrative sensorimotor processing with ankle movements.
Exp Brain Res. 2005 Sep;166(1):31-42. doi: 10.1007/s00221-005-2335-5. Epub 2005 Jul 21.
10
Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
Med Biol Eng Comput. 2018 Feb;56(2):261-272. doi: 10.1007/s11517-017-1681-3. Epub 2017 Jul 15.

引用本文的文献

1
Neural Correlates of Multisensory Integration for Feedback Stabilization of the Wrist.
Front Integr Neurosci. 2022 May 6;16:815750. doi: 10.3389/fnint.2022.815750. eCollection 2022.
2
Sensorimotor Learning: Neurocognitive Mechanisms and Individual Differences.
J Neuroeng Rehabil. 2017 Jul 13;14(1):74. doi: 10.1186/s12984-017-0279-1.
4
An MR safe algometer to study phantom and residual limb pain.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:146-9. doi: 10.1109/EMBC.2012.6345892.
5
Remembering forward: neural correlates of memory and prediction in human motor adaptation.
Neuroimage. 2012 Jan 2;59(1):582-600. doi: 10.1016/j.neuroimage.2011.07.072. Epub 2011 Aug 4.
6
fMRI assessment of upper extremity related brain activation with an MRI-compatible manipulandum.
Int J Comput Assist Radiol Surg. 2011 May;6(3):447-55. doi: 10.1007/s11548-010-0525-5. Epub 2010 Aug 10.
7
Development of an MR safe reach and grasp movement evaluation system to study brain activation patterns after stroke.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:911-4. doi: 10.1109/IEMBS.2009.5334674.

本文引用的文献

1
fMRI-Compatible Electromagnetic Haptic Interface.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7024-7. doi: 10.1109/IEMBS.2005.1616123.
2
MR compatible force sensing system for real-time monitoring of wrist moments during fMRI testing.
J Neurosci Methods. 2006 Sep 15;155(2):300-7. doi: 10.1016/j.jneumeth.2006.01.016. Epub 2006 Feb 21.
3
Neural correlates of reach errors.
J Neurosci. 2005 Oct 26;25(43):9919-31. doi: 10.1523/JNEUROSCI.1874-05.2005.
4
Detecting and adjusting for artifacts in fMRI time series data.
Neuroimage. 2005 Sep;27(3):624-34. doi: 10.1016/j.neuroimage.2005.04.039.
5
Feedforward and feedback processes in motor control.
Neuroimage. 2004 Aug;22(4):1775-83. doi: 10.1016/j.neuroimage.2004.05.003.
6
Neural basis for the processes that underlie visually guided and internally guided force control in humans.
J Neurophysiol. 2003 Nov;90(5):3330-40. doi: 10.1152/jn.00394.2003. Epub 2003 Jul 2.
7
Internal forward models in the cerebellum: fMRI study on grip force and load force coupling.
Prog Brain Res. 2003;142:171-88. doi: 10.1016/S0079-6123(03)42013-X.
8
Adaptation to destabilizing dynamics by means of muscle cocontraction.
Exp Brain Res. 2002 Apr;143(4):406-16. doi: 10.1007/s00221-002-1001-4. Epub 2002 Feb 9.
9
Cerebral activation during a simple force production task: changes in the time course of the haemodynamic response.
Neuroreport. 2001 Sep 17;12(13):2813-6. doi: 10.1097/00001756-200109170-00012.
10
An integrated software suite for surface-based analyses of cerebral cortex.
J Am Med Inform Assoc. 2001 Sep-Oct;8(5):443-59. doi: 10.1136/jamia.2001.0080443.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验