Capeáns Rubén, Sabuco Juan, Sanjuán Miguel A F, Yorke James A
Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain.
Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0211.
Transient chaos is a characteristic behaviour in nonlinear dynamics where trajectories in a certain region of phase space behave chaotically for a while, before escaping to an external attractor. In some situations, the escapes are highly undesirable, so that it would be necessary to avoid such a situation. In this paper, we apply a control method known as partial control that allows one to prevent the escapes of the trajectories to the external attractors, keeping the trajectories in the chaotic region forever. We also show, for the first time, the application of this method in three dimensions, which is the major step forward in this work. To illustrate how the method works, we have chosen the Lorenz system for a choice of parameters where transient chaos appears, as a paradigmatic example in nonlinear dynamics. We analyse three quite different ways to implement the method. First, we apply this method by building an one-dimensional map using the successive maxima of one of the variables. Next, we implement it by building a two-dimensional map through a Poincaré section. Finally, we built a three-dimensional map, which has the advantage of using a fixed time interval between application of the control, which can be useful for practical applications.This article is part of the themed issue 'Horizons of cybernetical physics'.
瞬态混沌是非线性动力学中的一种特征行为,在相空间的某个区域内,轨迹会在一段时间内表现出混沌行为,然后逃逸到外部吸引子。在某些情况下,这种逃逸是非常不可取的,因此有必要避免这种情况。在本文中,我们应用一种称为部分控制的控制方法,该方法可以防止轨迹逃逸到外部吸引子,使轨迹永远保持在混沌区域。我们还首次展示了该方法在三维空间中的应用,这是这项工作的主要进展。为了说明该方法的工作原理,我们选择了洛伦兹系统,在一组出现瞬态混沌的参数条件下,作为非线性动力学中的一个典型例子。我们分析了三种截然不同的方法来实现该方法。首先,我们通过使用其中一个变量的连续最大值构建一维映射来应用该方法。其次,我们通过庞加莱截面构建二维映射来实现它。最后,我们构建了一个三维映射,其优点是在应用控制之间使用固定的时间间隔,这对于实际应用可能很有用。本文是主题为“控制论物理的前沿”特刊的一部分。