Suppr超能文献

同步模式:从网络基序到层次网络。

Synchronization patterns: from network motifs to hierarchical networks.

作者信息

Krishnagopal Sanjukta, Lehnert Judith, Poel Winnie, Zakharova Anna, Schöll Eckehard

机构信息

Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany

Department of Physics, Birla Institute for Technology and Science Pilani, Pilani, Goa 403726, India.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0216.

Abstract

We investigate complex synchronization patterns such as cluster synchronization and partial amplitude death in networks of coupled Stuart-Landau oscillators with fractal connectivities. The study of fractal or self-similar topology is motivated by the network of neurons in the brain. This fractal property is well represented in hierarchical networks, for which we present three different models. In addition, we introduce an analytical eigensolution method and provide a comprehensive picture of the interplay of network topology and the corresponding network dynamics, thus allowing us to predict the dynamics of arbitrarily large hierarchical networks simply by analysing small network motifs. We also show that oscillation death can be induced in these networks, even if the coupling is symmetric, contrary to previous understanding of oscillation death. Our results show that there is a direct correlation between topology and dynamics: hierarchical networks exhibit the corresponding hierarchical dynamics. This helps bridge the gap between mesoscale motifs and macroscopic networks.This article is part of the themed issue 'Horizons of cybernetical physics'.

摘要

我们研究了具有分形连接性的耦合斯图尔特 - 朗道振荡器网络中的复杂同步模式,如簇同步和部分振幅死亡。对分形或自相似拓扑结构的研究源于大脑中的神经元网络。这种分形特性在层次网络中得到了很好的体现,我们为此提出了三种不同的模型。此外,我们引入了一种解析本征解方法,并全面描述了网络拓扑与相应网络动力学之间的相互作用,从而使我们能够通过分析小的网络基序来预测任意大型层次网络的动力学。我们还表明,即使耦合是对称的,这些网络中也能诱导出振荡死亡,这与之前对振荡死亡的理解相反。我们的结果表明,拓扑结构与动力学之间存在直接关联:层次网络呈现出相应的层次动力学。这有助于弥合中尺度基序与宏观网络之间的差距。本文是主题为“控制论物理学前沿”的特刊的一部分。

相似文献

1
Synchronization patterns: from network motifs to hierarchical networks.同步模式:从网络基序到层次网络。
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0216.
2
Partial synchronization and partial amplitude death in mesoscale network motifs.中尺度网络基序中的部分同步和部分振幅死亡
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022915. doi: 10.1103/PhysRevE.91.022915. Epub 2015 Feb 17.
4
Horizons of cybernetical physics.控制论物理学的视野
Philos Trans A Math Phys Eng Sci. 2017 Mar 6;375(2088). doi: 10.1098/rsta.2016.0223.
5
Controlling cluster synchronization by adapting the topology.通过调整拓扑结构来控制集群同步。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042914. doi: 10.1103/PhysRevE.90.042914. Epub 2014 Oct 17.
6
Complex partial synchronization patterns in networks of delay-coupled neurons.具有时滞耦合神经元网络的复杂部分同步模式。
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180128. doi: 10.1098/rsta.2018.0128. Epub 2019 Jul 22.

本文引用的文献

2
Coherence-Resonance Chimeras in a Network of Excitable Elements.可激发元件网络中的相干共振嵌合体
Phys Rev Lett. 2016 Jul 1;117(1):014102. doi: 10.1103/PhysRevLett.117.014102.
4
Tweezers for Chimeras in Small Networks.小网络中的嵌合体镊子。
Phys Rev Lett. 2016 Mar 18;116(11):114101. doi: 10.1103/PhysRevLett.116.114101. Epub 2016 Mar 14.
5
Stable and transient multicluster oscillation death in nonlocally coupled networks.非局部耦合网络中的稳定和瞬态多簇振荡死亡
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Nov;92(5):052915. doi: 10.1103/PhysRevE.92.052915. Epub 2015 Nov 30.
7
Robustness of chimera states for coupled FitzHugh-Nagumo oscillators.耦合FitzHugh-Nagumo振子的嵌合态鲁棒性
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022917. doi: 10.1103/PhysRevE.91.022917. Epub 2015 Feb 23.
8
Partial synchronization and partial amplitude death in mesoscale network motifs.中尺度网络基序中的部分同步和部分振幅死亡
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022915. doi: 10.1103/PhysRevE.91.022915. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验