Suppr超能文献

受挫振荡网络中亚稳态的出现:层次模块化的关键作用。

Emergence of metastability in frustrated oscillatory networks: the key role of hierarchical modularity.

作者信息

Caprioglio Enrico, Berthouze Luc

机构信息

Department of Informatics, University of Sussex, Brighton, United Kingdom.

出版信息

Front Netw Physiol. 2024 Aug 21;4:1436046. doi: 10.3389/fnetp.2024.1436046. eCollection 2024.

Abstract

Oscillatory complex networks in the metastable regime have been used to study the emergence of integrated and segregated activity in the brain, which are hypothesised to be fundamental for cognition. Yet, the parameters and the underlying mechanisms necessary to achieve the metastable regime are hard to identify, often relying on maximising the correlation with empirical functional connectivity dynamics. Here, we propose and show that the brain's hierarchically modular mesoscale structure alone can give rise to robust metastable dynamics and (metastable) chimera states in the presence of phase frustration. We construct unweighted 3-layer hierarchical networks of identical Kuramoto-Sakaguchi oscillators, parameterized by the average degree of the network and a structural parameter determining the ratio of connections between and within blocks in the upper two layers. Together, these parameters affect the characteristic timescales of the system. Away from the critical synchronization point, we detect the emergence of metastable states in the lowest hierarchical layer coexisting with chimera and metastable states in the upper layers. Using the Laplacian renormalization group flow approach, we uncover two distinct pathways towards achieving the metastable regimes detected in these distinct layers. In the upper layers, we show how the symmetry-breaking states depend on the slow eigenmodes of the system. In the lowest layer instead, metastable dynamics can be achieved as the separation of timescales between layers reaches a critical threshold. Our results show an explicit relationship between metastability, chimera states, and the eigenmodes of the system, bridging the gap between harmonic based studies of empirical data and oscillatory models.

摘要

亚稳态下的振荡复杂网络已被用于研究大脑中整合与分离活动的出现,这些活动被认为是认知的基础。然而,实现亚稳态所需的参数和潜在机制很难确定,通常依赖于最大化与经验功能连接动力学的相关性。在这里,我们提出并表明,仅大脑的分层模块化中尺度结构就能在存在相位挫折的情况下产生强大的亚稳动力学和(亚稳)奇异态。我们构建了由相同的仓本-坂口振荡器组成的无加权三层分层网络,通过网络的平均度和一个决定上层两层中块间和块内连接比例的结构参数进行参数化。这些参数共同影响系统的特征时间尺度。远离临界同步点,我们在最低分层中检测到亚稳态的出现,同时在上层存在奇异态和亚稳态。使用拉普拉斯重整化群流方法,我们揭示了在这些不同层中实现检测到的亚稳态的两条不同途径。在上层,我们展示了对称破缺态如何依赖于系统的慢本征模。而在最低层,当层间时间尺度的分离达到临界阈值时,可以实现亚稳动力学。我们的结果显示了亚稳态、奇异态与系统本征模之间的明确关系,弥合了基于谐波的经验数据研究与振荡模型之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19de/11372895/d4adefa086fc/fnetp-04-1436046-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验