Choudhury Samrat Roy, Ordaz Josue, Lo Chiao-Ling, Damayanti Nur P, Zhou Feng, Irudayaraj Joseph
Department of Agricultural & Biological Engineering, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907.
Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
Toxicol Sci. 2017 Mar 1;156(1):261-274. doi: 10.1093/toxsci/kfw252.
In this study we evaluated and correlated the cytotoxic effects of zinc oxide nanoparticles (ZnO-NPs) to the epigenetic modifications, using human embryonic kidney (HEK-293) cells as a model system. Imaging of singlet and total reactive oxygen species (ROS) in ZnO-NPs-treated live cells was performed followed by the evaluation of its effects on cytoskeletal, mitochondrial, and nuclear integrity, and on the expression of ROS responsive genes. Next, we determined the global and locus-specific changes in DNA-methylation at the 3 global genomic repeat sequences namely LINE-1, subtelomeric D4Z4 and pericentromeric NBL2, and at the promoter of selected ROS responsive genes (AOX1, HMOX1, NCF2, SOD3). Our studies revealed severe actin depolymerization, increased release of mitochondrial cytochrome C, and nuclear enlargement in ZnO-NPs-treated cells. At the epigenetic level, we observed global reduction in 5-methylcytosine and increase in 5-hydroxymethylcytosine content. Additionally, we observed significant increase in the expression of Ten-Eleven Translocation (TET)-methylcytosine dioxygenase genes but not in the expression of DNA-methyltransferases (DNMTs). Based on our findings, we suggest that ZnO-NPs induce abundant increase in ROS to promote multimodal structural and functional anomalies in cells. Most importantly, ZnO-NP-induced ROS may promote global hypomethylation in cells by triggering the expression of TET-enzymes, avoiding DNMT interferences. Global DNA demethylation is considered to be the hallmark of the majority of cancers and once acquired this could be propagated to future progenies. The present study, hence, can be used as a platform for the assessment of epigenomic toxicity of ZnO-NPs in humans in the light of its use in commercial products.
在本研究中,我们以人胚肾(HEK-293)细胞为模型系统,评估了氧化锌纳米颗粒(ZnO-NPs)的细胞毒性作用及其与表观遗传修饰的相关性。对经ZnO-NPs处理的活细胞中的单线态和总活性氧(ROS)进行成像,随后评估其对细胞骨架、线粒体和细胞核完整性以及对ROS反应性基因表达的影响。接下来,我们确定了3个全基因组重复序列(即LINE-1、亚端粒D4Z4和着丝粒周围NBL2)以及选定的ROS反应性基因(AOX1、HMOX1、NCF2、SOD3)启动子处DNA甲基化的整体和位点特异性变化。我们的研究显示,经ZnO-NPs处理的细胞中存在严重的肌动蛋白解聚、线粒体细胞色素C释放增加和细胞核增大。在表观遗传水平上,我们观察到5-甲基胞嘧啶整体减少,5-羟甲基胞嘧啶含量增加。此外,我们观察到十-十一易位(TET)-甲基胞嘧啶双加氧酶基因的表达显著增加,但DNA甲基转移酶(DNMTs)的表达没有增加。基于我们的研究结果,我们认为ZnO-NPs诱导ROS大量增加,从而促进细胞中多模式的结构和功能异常。最重要 的是,ZnO-NP诱导的ROS可能通过触发TET酶的表达来促进细胞中的整体低甲基化,避免DNMT的干扰。整体DNA去甲基化被认为是大多数癌症的标志,一旦获得,这种状态可能会传递给后代。因此,鉴于ZnO-NPs在商业产品中的应用,本研究可作为评估其对人类表观基因组毒性的平台。