Rajabifar Nariman, Rostami Amir, Afshar Shahnoosh, Mosallanezhad Pezhman, Zarrintaj Payam, Shahrousvand Mohsen, Nazockdast Hossein
Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran.
Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran.
Polymers (Basel). 2024 Sep 5;16(17):2526. doi: 10.3390/polym16172526.
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
皮肤是人体最大的器官,具有抵御外部伤害和病原体的作用。尽管皮肤具有内在的自我再生能力,但皮肤损伤的修复是一个复杂且耗时的过程,不过对于维持其关键生理功能至关重要。主要的治疗方法包括使用敷料来保护伤口、降低感染风险并减少二次受伤的可能性。为加速伤口愈合而寻求解决方案,已在材料科学领域取得了突破性进展,从水凝胶、水胶体到泡沫以及微/纳米纤维。鉴于纳米纤维在设计上的便利性和灵活性,其具有高的表面积与体积比、药物的控释、对细胞外基质的模拟以及优异的机械性能。核壳纳米纤维通过具有独立功能的分隔室、生物活性剂的适配释放曲线以及更好的水分管理,为伤口敷料领域带来了更广阔的前景。在本综述中,我们重点介绍用于伤口敷料应用的核壳纳米纤维,包括对常见材料和合成方法的概述。我们的讨论涵盖伤口愈合过程、理想的伤口敷料特性、用于多功能核壳纳米纤维的当前有机和无机材料种类,以及制备合适同轴结构的常用技术。我们还概述了抗菌纳米材料,重点介绍其晶体结构、性质和功能。我们最后展望了核壳纳米纤维为有效伤口愈合的更先进设计所提供的潜力。