Suppr超能文献

用于量化肌肉减少症和后遗症肌肉退化的骨密度分布的非线性三峰回归分析

Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration.

作者信息

Edmunds K J, Árnadóttir Í, Gíslason M K, Carraro U, Gargiulo P

机构信息

Institute for Biomedical and Neural Engineering, Reykjavík University, Menntavegur 1, 101 Reykjavík, Iceland.

IRCCS Fondazione Ospedale San Camillo, Via Alberoni 70, Lido, 30126 Venezia, Italy.

出版信息

Comput Math Methods Med. 2016;2016:8932950. doi: 10.1155/2016/8932950. Epub 2016 Dec 27.

Abstract

Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.

摘要

肌肉退化一直被认为是老年人群以及患有神经肌肉疾病或损伤的个体高死亡率的独立危险因素。虽然现有大量关于其量化以及与合并症相关性的文献,但在这方面进行分析的定量金标准仍未明确。在此,我们假设严格量化整个放射密度分布所获得的肌肉质量信息比现有方法所报告的平均值更多。本研究报告了一种非线性三峰回归分析方法的开发及其应用,该方法用于对一名健康年轻成年人、一名健康老年人和一名脊髓损伤患者的大腿肌肉CT扫描的放射密度分布进行分析。然后将该方法应用于一个全髋关节置换(THA)队列,以评估其健康腿和手术腿术前和术后的差异。最初代表性模型的结果与HU分布具有高度相关性,回归参数突出了受试者之间生理上明显的差异。此外,THA队列的结果呼应了生理上的合理性,并表明手术后双腿的肌肉质量有显著改善。总之,这些结果突出了来自整个HU分布的新参数的实用性,这些参数可以为肌肉退化的最佳量化提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5e5/5223076/0c55d52c6f77/CMMM2016-8932950.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验