Suppr超能文献

用于研究心肌细胞与非心肌细胞相互作用的心脏微环境体外模型:超越聚苯乙烯培养皿的仿生方法。

In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish.

作者信息

Kofron Celinda M, Mende Ulrike

机构信息

Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA.

出版信息

J Physiol. 2017 Jun 15;595(12):3891-3905. doi: 10.1113/JP273100. Epub 2017 Feb 27.

Abstract

The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.

摘要

心脏是一个复杂的多细胞器官,由心肌细胞和非心肌细胞组成,非心肌细胞包括成纤维细胞、内皮细胞和免疫细胞。心肌细胞负责电传导和产生收缩力,而其他细胞类型则负责基质沉积、血管生成和损伤反应。已知心肌细胞和非心肌细胞会相互交流并发挥相互调节作用。它们共同决定了健康心肌和重塑心肌的结构、电学和力学特性。心肌细胞和非心肌细胞之间的动态相互作用在应激/损伤诱导的肥大和纤维化发展中起关键作用,最终可能导致心力衰竭和心律失常。心肌中不同细胞类型的复杂交织以及组织结构的复杂性阻碍了对异细胞间通讯的研究。体外模型以直接且可控的方式促进了对心脏细胞的研究,并提供了重要的功能和机制见解。然而,这些培养物通常缺乏其他细胞类型的调节输入,以及来自心脏微环境的额外地形、电学、力学和生化信号,而这些信号都有助于调节细胞分化、成熟、排列、功能和存活。开发更复杂的多细胞生理平台取得了进展,该平台整合了来自心肌微环境的各种信号,有望产生更具生理相关性的类似心脏组织的体外模型,用于机制生物学研究、疾病建模、治疗靶点识别、药物测试和再生。

相似文献

3
Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.
J Mol Cell Cardiol. 2016 May;94:22-31. doi: 10.1016/j.yjmcc.2016.03.005. Epub 2016 Mar 18.
4
Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
Acta Biomater. 2017 Jun;55:120-130. doi: 10.1016/j.actbio.2017.04.027. Epub 2017 Apr 25.
6
Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation.
J Electrocardiol. 2005 Oct;38(4 Suppl):45-50. doi: 10.1016/j.jelectrocard.2005.06.096.
7
Communication signals between cardiac fibroblasts and cardiac myocytes.
J Cardiovasc Pharmacol. 2011 May;57(5):513-21. doi: 10.1097/FJC.0b013e31821209ee.
8
9
Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study.
Heart Rhythm. 2009 Nov;6(11):1641-9. doi: 10.1016/j.hrthm.2009.08.003. Epub 2009 Aug 5.
10
Enhanced fibroblast-myocyte interactions in response to cardiac injury.
Circ Res. 2010 Oct 15;107(8):1011-20. doi: 10.1161/CIRCRESAHA.110.227421. Epub 2010 Aug 12.

引用本文的文献

2
Advancing 3D Engineered In Vitro Models for Heart Failure Research: Key Features and Considerations.
Bioengineering (Basel). 2024 Dec 3;11(12):1220. doi: 10.3390/bioengineering11121220.
3
Heart-on-a-Chip Model of Epicardial-Myocardial Interaction in Ischemia Reperfusion Injury.
Adv Healthc Mater. 2024 Aug;13(21):e2302642. doi: 10.1002/adhm.202302642. Epub 2024 May 9.
4
Vascularized microfluidic models of major organ structures and cancerous tissues.
Biomicrofluidics. 2023 Dec 6;17(6):061502. doi: 10.1063/5.0159800. eCollection 2023 Dec.
6
Biotechnological advances and applications of human pluripotent stem cell-derived heart models.
Front Bioeng Biotechnol. 2023 Jul 25;11:1214431. doi: 10.3389/fbioe.2023.1214431. eCollection 2023.
7
Recent developments in organ-on-a-chip technology for cardiovascular disease research.
Anal Bioanal Chem. 2023 Jul;415(18):3911-3925. doi: 10.1007/s00216-023-04596-9. Epub 2023 Mar 3.
8
Metabolic remodeling in takotsubo syndrome.
Front Cardiovasc Med. 2022 Nov 24;9:1060070. doi: 10.3389/fcvm.2022.1060070. eCollection 2022.
9
Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review.
iScience. 2022 Oct 8;25(11):105283. doi: 10.1016/j.isci.2022.105283. eCollection 2022 Nov 18.
10
Arrhythmia Assessment in Heterotypic Human Cardiac Myocyte-Fibroblast Microtissues.
Methods Mol Biol. 2022;2485:147-157. doi: 10.1007/978-1-0716-2261-2_10.

本文引用的文献

1
Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14852-14857. doi: 10.1073/pnas.1611184114. Epub 2016 Dec 7.
2
Biology of the cardiac myocyte in heart disease.
Mol Biol Cell. 2016 Jul 15;27(14):2149-60. doi: 10.1091/mbc.E16-01-0038.
4
Genetic tools for identifying and manipulating fibroblasts in the mouse.
Differentiation. 2016 Sep;92(3):66-83. doi: 10.1016/j.diff.2016.05.009. Epub 2016 Jun 21.
5
Nanowires and Electrical Stimulation Synergistically Improve Functions of hiPSC Cardiac Spheroids.
Nano Lett. 2016 Jul 13;16(7):4670-8. doi: 10.1021/acs.nanolett.6b02093. Epub 2016 Jun 23.
6
State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering.
Ann Biomed Eng. 2017 Jan;45(1):195-209. doi: 10.1007/s10439-016-1607-5. Epub 2016 Apr 11.
7
Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments.
Cell Mol Bioeng. 2016;9:12-37. doi: 10.1007/s12195-015-0422-7. Epub 2015 Nov 2.
8
Recounting Cardiac Cellular Composition.
Circ Res. 2016 Feb 5;118(3):368-70. doi: 10.1161/CIRCRESAHA.116.308139.
9
Extracellular matrix-mediated cellular communication in the heart.
J Mol Cell Cardiol. 2016 Feb;91:228-37. doi: 10.1016/j.yjmcc.2016.01.011. Epub 2016 Jan 14.
10
Putting together the clues of the everlasting neuro-cardiac liaison.
Biochim Biophys Acta. 2016 Jul;1863(7 Pt B):1904-15. doi: 10.1016/j.bbamcr.2016.01.009. Epub 2016 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验