Li Yanzhen, Asfour Huda, Bursac Nenad
Department of Biomedical Engineering, Duke University, United States.
Department of Biomedical Engineering, Duke University, United States; Regeneration Next, Duke University, United States.
Acta Biomater. 2017 Jun;55:120-130. doi: 10.1016/j.actbio.2017.04.027. Epub 2017 Apr 25.
Complex heterocellular interactions between cardiomyocytes and fibroblasts in the heart involve their bidirectional signaling via cell-cell contacts, paracrine factors, and extracellular matrix (ECM). These interactions vary with heart development and pathology leading to changes in cardiac structure and function. Whether cardiac fibroblasts of different ages interact differentially with cardiomyocytes to distinctly impact their function remains unknown. Here, we explored the direct structural and functional effects of fetal and adult cardiac fibroblasts on cardiomyocytes using a tissue-engineered 3D co-culture system. We show that the age of cardiac fibroblasts is a strong determinant of the structure, function, and molecular properties of co-cultured tissues. In particular, in vitro expanded adult, but not fetal, cardiac fibroblasts significantly deteriorated electrical and mechanical function of the co-cultured cardiomyocytes, as evidenced by slower action potential conduction, prolonged action potential duration, weaker contractions, higher tissue stiffness, and reduced calcium transient amplitude. This functional deficit was associated with structural and molecular signatures of pathological remodeling including fibroblast proliferation, interstitial collagen deposition, and upregulation of pro-fibrotic markers. Our studies imply critical roles of the age of supporting cells in engineering functional cardiac tissues and provide a new physiologically relevant in vitro platform to investigate influence of heterocellular interactions on cardiomyocyte function, development, and disease.
Previous studies have shown that cardiomyocytes and fibroblasts in the heart interact through direct contacts, paracrine factors, and matrix-mediated crosstalk. However, whether cardiac fibroblasts of different ages distinctly impact cardiomyocyte function remains elusive. We employed a tissue-engineered hydrogel-based co-culture system to study interactions of cardiomyocytes with fetal or adult cardiac fibroblasts. We show that the age of cardiac fibroblasts is a strong determinant of the structure, function, and molecular properties of engineered cardiac tissues and that key features of fibrotic myocardium are replicated by supplementing cardiomyocytes with expanded adult but not fetal fibroblasts. These findings relate to implantation of stem cell-derived cardiomyocytes in adult myocardium and warrant further studies of how age and source of non-myocytes impact cardiac function and maturation.
心脏中心肌细胞与成纤维细胞之间复杂的异细胞相互作用涉及通过细胞间接触、旁分泌因子和细胞外基质(ECM)进行的双向信号传导。这些相互作用随心脏发育和病理变化而变化,导致心脏结构和功能改变。不同年龄的心脏成纤维细胞与心肌细胞的相互作用是否存在差异,从而对心肌细胞功能产生不同影响,目前尚不清楚。在这里,我们使用组织工程3D共培养系统探索了胎儿和成体心脏成纤维细胞对心肌细胞的直接结构和功能影响。我们发现心脏成纤维细胞的年龄是共培养组织的结构、功能和分子特性的重要决定因素。特别是,体外扩增的成体而非胎儿心脏成纤维细胞显著损害了共培养心肌细胞的电功能和机械功能,表现为动作电位传导减慢、动作电位时程延长、收缩减弱、组织硬度增加以及钙瞬变幅度降低。这种功能缺陷与病理重塑的结构和分子特征相关,包括成纤维细胞增殖、间质胶原沉积以及促纤维化标志物的上调。我们的研究表明支持细胞的年龄在工程化功能性心脏组织中起着关键作用,并提供了一个新的生理相关体外平台,以研究异细胞相互作用对心肌细胞功能、发育和疾病的影响。
先前的研究表明,心脏中的心肌细胞和成纤维细胞通过直接接触、旁分泌因子和基质介导的串扰相互作用。然而,不同年龄的心脏成纤维细胞是否对心肌细胞功能有明显影响仍不清楚。我们采用基于组织工程水凝胶的共培养系统来研究心肌细胞与胎儿或成体心脏成纤维细胞的相互作用。我们发现心脏成纤维细胞的年龄是工程化心脏组织的结构、功能和分子特性的重要决定因素,并且通过用扩增的成体而非胎儿成纤维细胞补充心肌细胞,可以复制纤维化心肌的关键特征。这些发现与干细胞衍生的心肌细胞在成体心肌中的植入有关,值得进一步研究非心肌细胞的年龄和来源如何影响心脏功能和成熟。