Lefebvre Geneviève, Gustafson Paul
Université du Québec à Montréal, Canada.
Int J Biostat. 2010;6(2):Article 15. doi: 10.2202/1557-4679.1207.
Estimating treatment effects with observational data requires adjustment for confounding at the analysis stage. This is typically done by including the measured confounders along with the treatment covariate into a regression model for the outcome. Alternatively, it is also possible to adjust for confounding by taking into account the propensity of an individual to receive treatment, with inverse probability weighting (IPW). In the class of IPW estimators, the so-called doubly-robust estimator also requires the specification of the outcome regression model, in addition to the propensity model. The aim of this paper is to investigate the impact of misspecification of the outcome model on the performances of the usual regression and doubly-robust IPW estimators for estimating treatment effects. We examine the performances of the estimators across the parameter space for different scenarios of model misspecification using large-sample theory. We find that for small-to-moderate sample sizes, the regression estimator compares favorably to the IPW doubly-robust estimator. Finally we argue, both conceptually and on the basis of our results, that treatment-confounder interactions should be included in the outcome regression model.
使用观察性数据估计治疗效果需要在分析阶段对混杂因素进行调整。这通常是通过将测量到的混杂因素与治疗协变量一起纳入结果的回归模型来实现的。或者,也可以通过考虑个体接受治疗的倾向,采用逆概率加权(IPW)来调整混杂因素。在IPW估计量类别中,所谓的双重稳健估计量除了倾向模型外,还需要指定结果回归模型。本文的目的是研究结果模型的错误设定对用于估计治疗效果的常用回归和双重稳健IPW估计量性能的影响。我们使用大样本理论研究了不同模型错误设定场景下估计量在参数空间中的性能。我们发现,对于中小样本量,回归估计量比IPW双重稳健估计量表现更好。最后,我们从概念上和基于我们的结果认为,治疗-混杂因素相互作用应包含在结果回归模型中。