Li Fengcheng, Xie Guosheng, Huang Jiangfeng, Zhang Ran, Li Yu, Zhang Miaomiao, Wang Yanting, Li Ao, Li Xukai, Xia Tao, Qu Chengcheng, Hu Fan, Ragauskas Arthur J, Peng Liangcai
Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China.
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
Plant Biotechnol J. 2017 Sep;15(9):1093-1104. doi: 10.1111/pbi.12700. Epub 2017 Mar 15.
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.
对植物细胞壁进行基因改造已被提出用于降低木质纤维素的难降解性,以提高生物质糖化效率。自从首次鉴定出纤维素合酶(CESA)基因以来,已经报道了几十种CESA突变体,但几乎所有突变体在植物生长发育方面都表现出缺陷表型。在本研究中,水稻(Oryza sativa)Osfc16突变体在CESA9的P-CR保守位点发生了替换(W481C、P482S),与野生型(粳稻品种日本晴)相比,其植物生长受到的影响较小,生物量产量提高了25%-41%。化学和超微结构分析表明,与野生型相比,Osfc16的纤维素结晶度(CrI)显著降低,次生细胞壁更薄。CESA免疫共沉淀检测,以及蛋白酶体抑制剂(MG132)和两种不同的纤维素抑制剂(荧光增白剂、CGA)的应用表明,CESA9突变可能影响CESA4/7/9复合物的完整性,这可能导致CESA蛋白酶体快速降解,从而合成低聚合度纤维素。这些可能会降低纤维素CrI,提高植物抗倒伏性,这是植物生长和谷物生产中的一个主要综合农艺性状,并使生物质酶解糖化提高高达2.3倍,乙醇生产率提高34%-42%。本研究首次报道了对低聚合度纤维素生产的直接改造,这在生物质产业中具有广泛应用。