Ye Yafeng, Wang Shuoxun, Wu Kun, Ren Yan, Jiang Hongrui, Chen Jianfeng, Tao Liangzhi, Fu Xiangdong, Liu Binmei, Wu Yuejin
Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
Rice (N Y). 2021 Feb 17;14(1):19. doi: 10.1186/s12284-021-00457-0.
Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another.
Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type (WT). Further experiments indicated that the OsCESA9 mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9 heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging.
Hence, OsCESA9 allele can improve rice salt tolerance and provide the prospect of the rice straw for biofuels and bioproducts due to its improved enzymatic saccharification.
纤维素合酶(CESA)突变体因其较低的纤维素含量在秸秆加工方面具有潜在用途,但几乎所有突变体在植物生长发育方面都表现出缺陷表型。在降低纤维素含量的同时平衡正常的植物生长仍然是一个挑战,因为纤维素含量与正常植物生长通常呈负相关。
在此,水稻(Oryza sativa)半显性脆茎(sdbc)突变体Sdbc1,其在OsCESA9的第一个保守天冬氨酸残基处存在一个替换(D387N),与野生型(WT)相比,表现出较低的纤维素含量、减小的次生壁厚度以及增强的生物质酶解糖化能力。进一步的实验表明,OsCESA9突变可能与野生型OsCESA9竞争与OsCESA4和OsCESA7相互作用,进而形成无功能或部分功能的纤维素合成复合体(CSCs)。OsCESA9/OsCESA9杂合植株通过清除和解毒活性氧(ROS)并间接影响相关基因表达来提高耐盐性。它们还因其脆茎和较低的纤维素含量而改善了水稻秸秆还田情况,且对谷物产量和倒伏没有任何负面影响。
因此,OsCESA9等位基因可提高水稻耐盐性,并因其改善的酶解糖化能力为水稻秸秆用于生物燃料和生物制品提供了前景。