Department of Biomedical Engineering, Pratt School of Engineering, Duke University , Durham, North Carolina 27708, United States.
Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University , Durham, North Carolina 27708, United States.
ACS Appl Mater Interfaces. 2017 Feb 15;9(6):5522-5529. doi: 10.1021/acsami.6b15836. Epub 2017 Feb 2.
Advances in electronics and life sciences have generated interest in "lab-on-a-chip" systems utilizing complementary metal oxide semiconductor (CMOS) circuitry for low-power, portable, and cost-effective biosensing platforms. Here, we present a simple and reliable approach for coating "high-κ" metal oxide dielectric materials with "non-fouling" (protein- and cell-resistant) poly(oligo(ethylene glycol) methyl ether methacrylate (POEGMA) polymer brushes as biointerfacial coatings to improve their relevance for biosensing applications utilizing advanced electronic components. By using a surface-initiated "grafting from" strategy, POEGMA films were reliably grown on each material, as confirmed by ellipsometric measurements and X-ray photoelectron spectroscopy (XPS) analysis. The electrical behavior of these POEGMA films was also studied to determine the potential impact on surrounding electronic devices, yielding information on relative permittivity and breakdown field for POEGMA in both dry and hydrated states. We show that the incorporation of POEGMA coatings significantly reduced levels of nonspecific protein adsorption compared to uncoated high-κ dielectric oxide surfaces as shown by protein resistance assays. These attributes, combined with the robust dielectric properties of POEGMA brushes on high-κ surfaces open the way to incorporate this protein and cell resistant polymer interface into CMOS devices for biomolecular detection in a complex liquid milieu.
电子学和生命科学的进步使得人们对利用互补金属氧化物半导体(CMOS)电路的“片上实验室”系统产生了兴趣,这种系统可用于低功率、便携式和具有成本效益的生物传感平台。在这里,我们提出了一种简单可靠的方法,即用“不易污染”(抗蛋白和抗细胞)聚(聚乙二醇甲基醚甲基丙烯酸酯)(POEGMA)聚合物刷来涂覆“高κ”金属氧化物电介质材料,作为生物界面涂层,以提高其在利用先进电子元件的生物传感应用中的相关性。通过使用表面引发的“从”接枝策略,可以可靠地在每种材料上生长 POEGMA 薄膜,这一点通过椭偏测量和 X 射线光电子能谱(XPS)分析得到了证实。还研究了这些 POEGMA 薄膜的电学行为,以确定其对周围电子设备的潜在影响,从而获得了 POEGMA 在干燥和水合状态下的相对介电常数和击穿场的信息。我们表明,与未涂覆的高κ介电氧化物表面相比,POEGMA 涂层的掺入显著降低了非特异性蛋白吸附的水平,这一点通过蛋白抗性测定得到了证实。这些特性,再加上 POEGMA 刷在高κ表面上的稳健介电性能,为将这种抗蛋白和抗细胞的聚合物界面纳入 CMOS 设备以在复杂的液体环境中进行生物分子检测铺平了道路。