Suppr超能文献

光声光谱法测定肺癌生物标志物的初步研究。

Photoacoustic Spectroscopy for the Determination of Lung Cancer Biomarkers-A Preliminary Investigation.

机构信息

Hamburg University of Applied Sciences, Heinrich Blasius Institute for Physical Technologies, Berliner Tor 21, 20099 Hamburg, Germany.

University of the West of Scotland, High Street, PA1 2BE Paisley, UK.

出版信息

Sensors (Basel). 2017 Jan 21;17(1):210. doi: 10.3390/s17010210.

Abstract

With 1.6 million deaths per year, lung cancer is one of the leading causes of death worldwide. One reason for this high number is the absence of a preventive medical examination method. Many diagnoses occur in a late cancer stage with a low survival rate. An early detection could significantly decrease the mortality. In recent decades, certain substances in human breath have been linked to certain diseases. Different studies show that it is possible to distinguish between lung cancer patients and a healthy control group by analyzing the volatile organic compounds (VOCs) in their breath. We developed a sensor based on photoacoustic spectroscopy for six of the most relevant VOCs linked to lung cancer. As a radiation source, the sensor uses an optical-parametric oscillator (OPO) in a wavelength region from 3.2 µm to 3.5 µm. The limits of detection for a single substance range between 5 ppb and 142 ppb. We also measured high resolution absorption spectra of the biomarkers compared to the data currently available from the National Institute of Standards and Technology (NIST) database, which is the basis of any selective spectroscopic detection. Future lung cancer screening devices could be based on the further development of this sensor.

摘要

每年有 160 万人死于肺癌,是全球主要的死亡原因之一。造成这种高死亡率的原因之一是缺乏预防性的医学检查方法。许多诊断发生在癌症晚期,存活率低。早期发现可以显著降低死亡率。近几十年来,人类呼吸中的某些物质与某些疾病有关。不同的研究表明,通过分析呼吸中的挥发性有机化合物 (VOCs),可以区分肺癌患者和健康对照组。我们开发了一种基于光声光谱学的传感器,用于检测与肺癌相关的六种最重要的 VOCs。作为辐射源,传感器在 3.2 µm 至 3.5 µm 的波长范围内使用光学参量振荡器 (OPO)。每种物质的检测限在 5 ppb 到 142 ppb 之间。我们还测量了生物标志物的高分辨率吸收光谱,与美国国家标准与技术研究院 (NIST) 数据库中目前可用的数据进行了比较,NIST 数据库是任何选择性光谱检测的基础。未来的肺癌筛查设备可以基于该传感器的进一步发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cc6/5298781/3bab6ae3355a/sensors-17-00210-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验