Department of Mechanical and Aerospace Engineering, ‡Materials Science and Engineering Program, University of California-San Diego , La Jolla, California 92093, United States.
ACS Nano. 2017 Mar 28;11(3):2470-2476. doi: 10.1021/acsnano.6b07836. Epub 2017 Feb 2.
Amorphous Si (a-Si) nanostructures are ubiquitous in numerous electronic and optoelectronic devices. Amorphous materials are considered to possess the lower limit to the thermal conductivity (κ), which is ∼1 W·m K for a-Si. However, recent work suggested that κ of micrometer-thick a-Si films can be greater than 3 W·m K, which is contributed to by propagating vibrational modes, referred to as "propagons". However, precise determination of κ in a-Si has been elusive. Here, we used structures of a-Si nanotubes and suspended a-Si films that enabled precise in-plane thermal conductivity (κ) measurement within a wide thickness range of 5 nm to 1.7 μm. We showed unexpectedly high κ in a-Si nanostructures, reaching ∼3.0 and 5.3 W·m K at ∼100 nm and 1.7 μm, respectively. Furthermore, the measured κ is significantly higher than the cross-plane κ on the same films. This unusually high and anisotropic thermal conductivity in the amorphous Si nanostructure manifests the surprisingly broad propagon mean free path distribution, which is found to range from 10 nm to 10 μm, in the disordered and atomically isotropic structure. This result provides an unambiguous answer to the century-old problem regarding mean free path distribution of propagons and also sheds light on the design and performance of numerous a-Si based electronic and optoelectronic devices.
非晶硅(a-Si)纳米结构在众多电子和光电子器件中无处不在。非晶材料被认为具有热导率(κ)的下限,约为 1 W·m K 的 a-Si。然而,最近的工作表明,微米厚的 a-Si 薄膜的κ可以大于 3 W·m K,这归因于传播振动模式,称为“传播子”。然而,精确确定 a-Si 的 κ 一直难以捉摸。在这里,我们使用了 a-Si 纳米管的结构和悬浮的 a-Si 薄膜,在 5nm 到 1.7μm 的广泛厚度范围内实现了精确的面内热导率(κ)测量。我们出乎意料地发现 a-Si 纳米结构具有较高的 κ,在约 100nm 和 1.7μm 时分别达到约 3.0 和 5.3 W·m K。此外,测量的 κ 明显高于同一薄膜的面外 κ。在无序和原子各向同性的结构中,这种非晶 Si 纳米结构中出乎意料的高各向异性热导率表现出传播子非常宽的平均自由程分布,其范围从 10nm 到 10μm。这一结果为传播子的平均自由程分布这一存在了一个世纪的问题提供了一个明确的答案,也为众多基于 a-Si 的电子和光电子器件的设计和性能提供了启示。