Tambo Naoki, Liao Yuxuan, Zhou Chun, Ashley Elizabeth Michiko, Takahashi Kouhei, Nealey Paul F, Naito Yasuyuki, Shiomi Junichiro
Technology Division, Panasonic Corporation, Kyoto, Japan.
Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan.
Sci Adv. 2020 Sep 25;6(39). doi: 10.1126/sciadv.abc0075. Print 2020 Sep.
Engineering the thermal conductivity of amorphous materials is highly essential for the thermal management of future electronic devices. Here, we demonstrate the impact of ultrafine nanostructuring on the thermal conductivity reduction of amorphous silicon nitride (a-SiN) thin films, in which the thermal transport is inherently impeded by the atomic disorders. Ultrafine nanostructuring with feature sizes below 20 nm allows us to fully suppress contribution of the propagating vibrational modes (propagons), leaving only the diffusive vibrational modes (diffusons) to contribute to thermal transport in a-SiN A combination of the phonon-gas kinetics model and the Allen-Feldmann theory reproduced the measured results without any fitting parameters. The thermal conductivity reduction was explained as extremely strong diffusive boundary scattering of both propagons and diffusons. These findings give rise to substantial tunability of thermal conductivity of amorphous materials, which enables us to provide better thermal solutions in microelectronic devices.
调控非晶材料的热导率对于未来电子设备的热管理至关重要。在此,我们展示了超细纳米结构对非晶硅氮化物(a-SiN)薄膜热导率降低的影响,其中热输运因原子无序而固有地受到阻碍。特征尺寸低于20nm的超细纳米结构使我们能够完全抑制传播振动模式(传播子)的贡献,仅留下扩散振动模式(扩散子)对a-SiN中的热输运做出贡献。声子气动力学模型和艾伦 - 费尔德曼理论的结合无需任何拟合参数就能重现测量结果。热导率的降低被解释为传播子和扩散子都发生了极强的扩散边界散射。这些发现带来了非晶材料热导率的大幅可调性,这使我们能够在微电子设备中提供更好的热解决方案。