Suppr超能文献

使用统计工具和专家评审改进医院实施中过渡性护理策略的循证分组。

Improving evidence-based grouping of transitional care strategies in hospital implementation using statistical tools and expert review.

机构信息

Center for Health Services Research, University of Kentucky, Lexington, USA.

Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, USA.

出版信息

BMC Health Serv Res. 2021 Jan 7;21(1):35. doi: 10.1186/s12913-020-06020-9.

Abstract

BACKGROUND

As health systems transition to value-based care, improving transitional care (TC) remains a priority. Hospitals implementing evidence-based TC models often adapt them to local contexts. However, limited research has evaluated which groups of TC strategies, or transitional care activities, commonly implemented by hospitals correspond with improved patient outcomes. In order to identify TC strategy groups for evaluation, we applied a data-driven approach informed by literature review and expert opinion.

METHODS

Based on a review of evidence-based TC models and the literature, focus groups with patients and family caregivers identifying what matters most to them during care transitions, and expert review, the Project ACHIEVE team identified 22 TC strategies to evaluate. Patient exposure to TC strategies was measured through a hospital survey (N = 42) and prospective survey of patients discharged from those hospitals (N = 8080). To define groups of TC strategies for evaluation, we performed a multistep process including: using ACHIEVE'S prior retrospective analysis; performing exploratory factor analysis, latent class analysis, and finite mixture model analysis on hospital and patient survey data; and confirming results through expert review. Machine learning (e.g., random forest) was performed using patient claims data to explore the predictive influence of individual strategies, strategy groups, and key covariates on 30-day hospital readmissions.

RESULTS

The methodological approach identified five groups of TC strategies that were commonly delivered as a bundle by hospitals: 1) Patient Communication and Care Management, 2) Hospital-Based Trust, Plain Language, and Coordination, 3) Home-Based Trust, Plain language, and Coordination, 4) Patient/Family Caregiver Assessment and Information Exchange Among Providers, and 5) Assessment and Teach Back. Each TC strategy group comprises three to six, non-mutually exclusive TC strategies (i.e., some strategies are in multiple TC strategy groups). Results from random forest analyses revealed that TC strategies patients reported receiving were more important in predicting readmissions than TC strategies that hospitals reported delivering, and that other key co-variates, such as patient comorbidities, were the most important variables.

CONCLUSION

Sophisticated statistical tools can help identify underlying patterns of hospitals' TC efforts. Using such tools, this study identified five groups of TC strategies that have potential to improve patient outcomes.

摘要

背景

随着医疗体系向以价值为基础的医疗模式转变,改善过渡性护理(TC)仍然是重中之重。实施循证 TC 模式的医院通常会根据当地情况对其进行调整。然而,有限的研究评估了哪些 TC 策略组或医院普遍实施的过渡性护理活动与改善患者结局相关。为了确定可用于评估的 TC 策略组,我们应用了一种基于文献回顾和专家意见的数据分析方法。

方法

基于对循证 TC 模式和文献的回顾,我们与患者和家属进行了焦点小组讨论,以确定他们在医疗过渡期间最关注的事项,并进行了专家审查,项目 ACHIEVE 团队确定了 22 项 TC 策略进行评估。通过医院调查(N=42)和这些医院出院患者的前瞻性调查(N=8080)来衡量患者接触 TC 策略的情况。为了确定用于评估的 TC 策略组,我们进行了一个多步骤的过程,包括:使用 ACHIEVE 的先前回顾性分析;对医院和患者调查数据进行探索性因素分析、潜在类别分析和有限混合模型分析;并通过专家审查确认结果。使用患者索赔数据进行机器学习(例如随机森林),以探讨各个策略、策略组和关键协变量对 30 天内医院再入院的预测影响。

结果

该方法确定了医院通常作为一个整体提供的 5 组 TC 策略:1)患者沟通和护理管理;2)基于医院的信任、简明语言和协调;3)基于家庭的信任、简明语言和协调;4)患者/家属评估和提供者之间的信息交流;5)评估和回授。每个 TC 策略组由三个至六个非互斥的 TC 策略组成(即,一些策略存在于多个 TC 策略组中)。随机森林分析的结果表明,患者报告接受的 TC 策略比医院报告提供的 TC 策略在预测再入院方面更为重要,而其他关键协变量,如患者合并症,是最重要的变量。

结论

复杂的统计工具可以帮助识别医院 TC 工作的潜在模式。使用这些工具,本研究确定了五个有潜力改善患者结局的 TC 策略组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af2/7791839/3b2e935b963b/12913_2020_6020_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验