Suppr超能文献

比较 CMS 层次条件类别(CMS-HCC)风险调整器与 Charlson 和 Elixhauser 合并症测量在预测死亡率方面的性能。

Comparison of the performance of the CMS Hierarchical Condition Category (CMS-HCC) risk adjuster with the Charlson and Elixhauser comorbidity measures in predicting mortality.

机构信息

Division of General Internal Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.

出版信息

BMC Health Serv Res. 2010 Aug 20;10:245. doi: 10.1186/1472-6963-10-245.

Abstract

BACKGROUND

The Centers for Medicare and Medicaid Services (CMS) has implemented the CMS-Hierarchical Condition Category (CMS-HCC) model to risk adjust Medicare capitation payments. This study intends to assess the performance of the CMS-HCC risk adjustment method and to compare it to the Charlson and Elixhauser comorbidity measures in predicting in-hospital and six-month mortality in Medicare beneficiaries.

METHODS

The study used the 2005-2006 Chronic Condition Data Warehouse (CCW) 5% Medicare files. The primary study sample included all community-dwelling fee-for-service Medicare beneficiaries with a hospital admission between January 1st, 2006 and June 30th, 2006. Additionally, four disease-specific samples consisting of subgroups of patients with principal diagnoses of congestive heart failure (CHF), stroke, diabetes mellitus (DM), and acute myocardial infarction (AMI) were also selected. Four analytic files were generated for each sample by extracting inpatient and/or outpatient claims for each patient. Logistic regressions were used to compare the methods. Model performance was assessed using the c-statistic, the Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and their 95% confidence intervals estimated using bootstrapping.

RESULTS

The CMS-HCC had statistically significant higher c-statistic and lower AIC and BIC values than the Charlson and Elixhauser methods in predicting in-hospital and six-month mortality across all samples in analytic files that included claims from the index hospitalization. Exclusion of claims for the index hospitalization generally led to drops in model performance across all methods with the highest drops for the CMS-HCC method. However, the CMS-HCC still performed as well or better than the other two methods.

CONCLUSIONS

The CMS-HCC method demonstrated better performance relative to the Charlson and Elixhauser methods in predicting in-hospital and six-month mortality. The CMS-HCC model is preferred over the Charlson and Elixhauser methods if information about the patient's diagnoses prior to the index hospitalization is available and used to code the risk adjusters. However, caution should be exercised in studies evaluating inpatient processes of care and where data on pre-index admission diagnoses are unavailable.

摘要

背景

医疗保险和医疗补助服务中心(CMS)已实施 CMS 层次条件类别(CMS-HCC)模型,以调整医疗保险人头支付的风险。本研究旨在评估 CMS-HCC 风险调整方法的性能,并将其与 Charlson 和 Elixhauser 合并症指标进行比较,以预测 Medicare 受益人的住院和 6 个月死亡率。

方法

本研究使用了 2005-2006 年慢性疾病数据仓库(CCW)5%的 Medicare 文件。主要研究样本包括所有在 2006 年 1 月 1 日至 6 月 30 日期间住院的社区居住的自费 Medicare 受益人的住院患者。此外,还选择了四个疾病特异性样本,包括充血性心力衰竭(CHF)、中风、糖尿病(DM)和急性心肌梗死(AMI)的主要诊断的患者亚组。为每个样本生成了四个分析文件,方法是从每个患者的住院和/或门诊记录中提取数据。使用逻辑回归比较了这些方法。使用 bootstrap 估计了 95%置信区间的 C 统计量、Akaike 信息准则(AIC)、贝叶斯信息准则(BIC)来评估模型性能。

结果

在分析文件中,包括索引住院期间的索赔,CMS-HCC 在预测所有样本的住院和 6 个月死亡率方面具有统计学意义的更高的 C 统计量和更低的 AIC 和 BIC 值,优于 Charlson 和 Elixhauser 方法。排除索引住院期间的索赔通常会导致所有方法的模型性能下降,而 CMS-HCC 方法的降幅最大。然而,CMS-HCC 仍然表现得与其他两种方法一样好或更好。

结论

CMS-HCC 方法在预测住院和 6 个月死亡率方面优于 Charlson 和 Elixhauser 方法。如果可以获得患者索引住院前的诊断信息并用于编码风险调整器,则 CMS-HCC 模型优于 Charlson 和 Elixhauser 方法。但是,在评估住院患者治疗过程和缺乏索引前入院诊断数据的研究中,应谨慎使用。

相似文献

2
Development of comorbidity score for patients undergoing major surgery.主要手术患者合并症评分的制定。
Health Serv Res. 2019 Dec;54(6):1223-1232. doi: 10.1111/1475-6773.13209. Epub 2019 Oct 1.

引用本文的文献

本文引用的文献

6
Development of a comorbidity index using physician claims data.利用医生申报数据开发一种共病指数。
J Clin Epidemiol. 2000 Dec;53(12):1258-67. doi: 10.1016/s0895-4356(00)00256-0.
8
Comorbidity measures for use with administrative data.用于行政数据的共病测量方法。
Med Care. 1998 Jan;36(1):8-27. doi: 10.1097/00005650-199801000-00004.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验