Suppr超能文献

使用高斯核支持向量机从多参数磁共振成像预测前列腺肿瘤位置:一项初步研究。

Predicting prostate tumour location from multiparametric MRI using Gaussian kernel support vector machines: a preliminary study.

作者信息

Sun Yu, Reynolds Hayley, Wraith Darren, Williams Scott, Finnegan Mary E, Mitchell Catherine, Murphy Declan, Ebert Martin A, Haworth Annette

机构信息

The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.

Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.

出版信息

Australas Phys Eng Sci Med. 2017 Mar;40(1):39-49. doi: 10.1007/s13246-016-0515-1. Epub 2017 Jan 24.

Abstract

The performance of a support vector machine (SVM) algorithm was investigated to predict prostate tumour location using multi-parametric MRI (mpMRI) data. The purpose was to obtain information of prostate tumour location for the implementation of bio-focused radiotherapy. In vivo mpMRI data were collected from 16 patients prior to radical prostatectomy. Sequences included T2-weighted imaging, diffusion-weighted imaging and dynamic contrast enhanced imaging. In vivo mpMRI was registered with 'ground truth' histology, using ex vivo MRI as an intermediate registration step to improve accuracy. Prostate contours were delineated by a radiation oncologist and tumours were annotated on histology by a pathologist. Five patients with minimal imaging artefacts were selected for this study. A Gaussian kernel SVM was trained and tested on different patient data subsets. Parameters were optimised using leave-oneout cross validation. Signal intensities of mpMRI were used as features and histology annotations as true labels. Prediction accuracy, as well as area under the curve (AUC) of the receiver operating characteristics (ROC) curve, were used to assess performance. Results demonstrated the prediction accuracy ranged from 70.4 to 87.1% and AUC of ROC ranged from 0.81 to 0.94. Additional investigations showed the apparent diffusion coefficient map from diffusion weighted imaging was the most important imaging modality for predicting tumour location. Future work will incorporate additional patient data into the framework to increase the sensitivity and specificity of the model, and will be extended to incorporate predictions of biological characteristics of the tumour which will be used in bio-focused radiotherapy optimisation.

摘要

研究了支持向量机(SVM)算法在利用多参数磁共振成像(mpMRI)数据预测前列腺肿瘤位置方面的性能。目的是获取前列腺肿瘤位置信息,以实施生物聚焦放疗。在16例患者进行根治性前列腺切除术之前收集了体内mpMRI数据。序列包括T2加权成像、扩散加权成像和动态对比增强成像。利用离体MRI作为中间配准步骤,将体内mpMRI与“金标准”组织学进行配准,以提高准确性。前列腺轮廓由放射肿瘤学家勾勒,肿瘤由病理学家在组织学上进行标注。选择了5例成像伪影最少的患者进行本研究。在不同的患者数据子集上对高斯核支持向量机进行训练和测试。使用留一法交叉验证对参数进行优化。将mpMRI的信号强度用作特征,将组织学标注用作真实标签。使用预测准确性以及接收器操作特征(ROC)曲线的曲线下面积(AUC)来评估性能。结果表明,预测准确率在70.4%至87.1%之间,ROC曲线的AUC在0.81至0.94之间。进一步的研究表明,扩散加权成像的表观扩散系数图是预测肿瘤位置最重要的成像方式。未来的工作将把更多患者数据纳入该框架,以提高模型的敏感性和特异性,并将扩展到纳入肿瘤生物学特征的预测,这些预测将用于生物聚焦放疗优化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验