Kremer Jeff Charles, Prudner Bethany Cheree, Lange Sara Elaine Stubbs, Bean Gregory Richard, Schultze Matthew Bailey, Brashears Caitlyn Brook, Radyk Megan DeAnna, Redlich Nathan, Tzeng Shin-Cheng, Kami Kenjiro, Shelton Laura, Li Aixiao, Morgan Zack, Bomalaski John Stephen, Tsukamoto Takashi, McConathy Jon, Michel Loren Scott, Held Jason Matthew, Van Tine Brian Andrew
Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Division of Molecular Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Cell Rep. 2017 Jan 24;18(4):991-1004. doi: 10.1016/j.celrep.2016.12.077.
Targeting defects in metabolism is an underutilized strategy for the treatment of cancer. Arginine auxotrophy resulting from the silencing of argininosuccinate synthetase 1 (ASS1) is a common metabolic alteration reported in a broad range of aggressive cancers. To assess the metabolic effects that arise from acute and chronic arginine starvation in ASS1-deficient cell lines, we performed metabolite profiling. We found that pharmacologically induced arginine depletion causes increased serine biosynthesis, glutamine anaplerosis, oxidative phosphorylation, and decreased aerobic glycolysis, effectively inhibiting the Warburg effect. The reduction of glycolysis in cells otherwise dependent on aerobic glycolysis is correlated with reduced PKM2 expression and phosphorylation and upregulation of PHGDH. Concurrent arginine deprivation and glutaminase inhibition was found to be synthetic lethal across a spectrum of ASS1-deficient tumor cell lines and is sufficient to cause in vivo tumor regression in mice. These results identify two synthetic lethal therapeutic strategies exploiting metabolic vulnerabilities of ASS1-negative cancers.
针对代谢缺陷是一种未得到充分利用的癌症治疗策略。精氨酸琥珀酸合成酶1(ASS1)沉默导致的精氨酸营养缺陷是在多种侵袭性癌症中报道的常见代谢改变。为了评估ASS1缺陷细胞系中急性和慢性精氨酸饥饿引起的代谢影响,我们进行了代谢物谱分析。我们发现,药理学诱导的精氨酸消耗导致丝氨酸生物合成增加、谷氨酰胺回补、氧化磷酸化增加以及有氧糖酵解减少,有效抑制了瓦伯格效应。在原本依赖有氧糖酵解的细胞中,糖酵解的减少与PKM2表达和磷酸化的降低以及PHGDH的上调相关。同时发现,精氨酸剥夺和谷氨酰胺酶抑制在一系列ASS1缺陷肿瘤细胞系中具有合成致死性,并且足以导致小鼠体内肿瘤消退。这些结果确定了两种利用ASS1阴性癌症代谢脆弱性的合成致死治疗策略。