Suppr超能文献

节杆菌肌病毒vB_ArtM-ArV1的分子分析:我们将其归咎于尾部。

Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail.

作者信息

Kaliniene Laura, Šimoliūnas Eugenijus, Truncaitė Lidija, Zajančkauskaitė Aurelija, Nainys Juozas, Kaupinis Algirdas, Valius Mindaugas, Meškys Rolandas

机构信息

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania.

出版信息

J Virol. 2017 Mar 29;91(8). doi: 10.1128/JVI.00023-17. Print 2017 Apr 15.

Abstract

This is the first report on a myophage that infects A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family : ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: (with short tails), (with long noncontractile tails), and (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus .

摘要

这是关于一种感染嗜盐放线菌(Actinopolyspora halophila)的肌尾噬菌体的首次报道。使用嗜盐放线菌68b菌株从土壤中分离出一种新型病毒,即vB_ArtM - ArV1(ArV1),用于噬菌体增殖。透射电子显微镜显示它与肌尾噬菌体科的成员相似:ArV1有一个等轴状头部(直径约74纳米)和一条收缩性、非柔性的尾部(约192纳米)。然而,系统发育和比较序列分析表明,与迄今已鉴定的任何肌尾噬菌体相比,ArV1与肌尾噬菌体科的噬菌体有更多共同基因。ArV1的基因组是一个线性、环状排列的双链DNA分子(71,200碱基对),GC含量为61.6%。该基因组包含101个开放阅读框(ORF),但没有tRNA基因。ArV1超过50%的基因编码独特蛋白质,这些蛋白质要么与数据库条目没有可靠的同源性,要么仅在肌尾噬菌体和长尾噬菌体中有同源物。使用生物信息学方法,鉴定出13个ArV1结构基因,包括编码头部、尾部、尾丝和基板蛋白的基因。基于蛋白质组学分析结果,另外6个ArV1 ORF被注释为编码假定的结构蛋白。基于四种保守病毒粒子蛋白的比对进行的系统发育分析表明,肌尾噬菌体形成一个离散的进化枝,似乎占据了肌尾噬菌体和长尾噬菌体之间的中间位置。因此,这里呈现的数据将有助于推进我们对构成噬菌体目(Bacteriophages)的噬菌体遗传多样性和进化的理解,噬菌体目可能起源于前寒武纪早期,是地球上数量最多的群体。大约95%的已知噬菌体是有尾病毒,包括三个科:短尾噬菌体科(Podoviridae,尾巴短)、长尾噬菌体科(Siphoviridae,尾巴长且非收缩性)和肌尾噬菌体科(Myoviridae,尾巴收缩性)。基于当前的假说,可能从长尾噬菌体进化而来的肌尾噬菌体被认为首先出现在革兰氏阴性细菌中,而它们后来才出现在革兰氏阳性细菌中。这里呈现的肌尾噬菌体vB_ArtM - ArV1的分子特征结果符合上述假说,因为乍一看,噬菌体vB_ArtM - ArV1似乎是一种具有看似功能性收缩尾的长尾噬菌体。我们的工作表明,这种“嵌合”肌尾噬菌体具有世界性,可能是生态上重要的土壤细菌属嗜盐放线菌属(Actinopolyspora)的特征。

相似文献

1
Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail.
J Virol. 2017 Mar 29;91(8). doi: 10.1128/JVI.00023-17. Print 2017 Apr 15.
2
Isolation and characterization of vB_ArS-ArV2 - first Arthrobacter sp. infecting bacteriophage with completely sequenced genome.
PLoS One. 2014 Oct 21;9(10):e111230. doi: 10.1371/journal.pone.0111230. eCollection 2014.
3
Complete genome sequence of enterobacteria phage 4MG, a new member of the subgroup "PVP-SE1-like phage" of the "rV5-like viruses".
Arch Virol. 2014 Nov;159(11):3137-40. doi: 10.1007/s00705-014-2140-1. Epub 2014 Jun 18.
4
Complete genome analysis of Pantoea agglomerans-infecting bacteriophage vB_PagM_AAM22.
Arch Virol. 2020 Sep;165(9):2111-2114. doi: 10.1007/s00705-020-04705-4. Epub 2020 Jun 18.
8
Characterization of a novel lytic myophage, phiA8-29, infecting Aeromonas strains.
Arch Virol. 2019 Mar;164(3):893-896. doi: 10.1007/s00705-018-4109-y. Epub 2018 Dec 17.
10
Complete genomic sequence of bacteriophage phiEcoM-GJ1, a novel phage that has myovirus morphology and a podovirus-like RNA polymerase.
Appl Environ Microbiol. 2008 Jan;74(2):516-25. doi: 10.1128/AEM.00990-07. Epub 2007 Nov 26.

引用本文的文献

1
Bacteriophages against : challenges and opportunities.
Front Bioeng Biotechnol. 2025 Aug 7;13:1605263. doi: 10.3389/fbioe.2025.1605263. eCollection 2025.
2
Molecular mechanism of bacteriophage contraction structure of an S-layer-penetrating bacteriophage.
Life Sci Alliance. 2025 Mar 26;8(6). doi: 10.26508/lsa.202403088. Print 2025 Jun.
3
Structural Studies of the Phage G Tail Demonstrate an Atypical Tail Contraction.
Viruses. 2021 Oct 18;13(10):2094. doi: 10.3390/v13102094.
5
Genome Sequence of sp. Phage Scuttle.
Microbiol Resour Announc. 2020 Jun 25;9(26):e00577-20. doi: 10.1128/MRA.00577-20.
6
Genome Sequences of Three Cluster AU Phages, Caterpillar, Nightmare, and Teacup.
Genome Announc. 2017 Nov 9;5(45):e01121-17. doi: 10.1128/genomeA.01121-17.
7
Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages.
PLoS One. 2017 Jul 17;12(7):e0180517. doi: 10.1371/journal.pone.0180517. eCollection 2017.

本文引用的文献

2
Baseplate assembly of phage Mu: Defining the conserved core components of contractile-tailed phages and related bacterial systems.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10174-9. doi: 10.1073/pnas.1607966113. Epub 2016 Aug 23.
3
The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis.
Nucleic Acids Res. 2016 Jul 8;44(W1):W410-5. doi: 10.1093/nar/gkw348. Epub 2016 Apr 29.
4
The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes.
Nucleic Acids Res. 2016 Jun 2;44(10):4551-64. doi: 10.1093/nar/gkw322. Epub 2016 Apr 25.
5
Mechanisms of DNA Packaging by Large Double-Stranded DNA Viruses.
Annu Rev Virol. 2015 Nov;2(1):351-78. doi: 10.1146/annurev-virology-100114-055212. Epub 2015 Sep 10.
6
A century of the phage: past, present and future.
Nat Rev Microbiol. 2015 Dec;13(12):777-86. doi: 10.1038/nrmicro3564. Epub 2015 Nov 9.
8
Structural remodeling of bacteriophage T4 and host membranes during infection initiation.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):E4919-28. doi: 10.1073/pnas.1501064112. Epub 2015 Aug 17.
10
Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton.
ISME J. 2015 Nov;9(11):2386-99. doi: 10.1038/ismej.2015.48. Epub 2015 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验