Suppr超能文献

定量多模态磁共振成像作为复发性低级别胶质瘤患者的非侵入性预后工具。

Quantitative multi-modal MR imaging as a non-invasive prognostic tool for patients with recurrent low-grade glioma.

作者信息

Neill Evan, Luks Tracy, Dayal Manisha, Phillips Joanna J, Perry Arie, Jalbert Llewellyn E, Cha Soonmee, Molinaro Annette, Chang Susan M, Nelson Sarah J

机构信息

Department of Radiology, University of California San Francisco, San Francisco,, CA, 94143, USA.

Department of Pathology and Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.

出版信息

J Neurooncol. 2017 Mar;132(1):171-179. doi: 10.1007/s11060-016-2355-y. Epub 2017 Jan 25.

Abstract

Low-grade gliomas can vary widely in disease course and therefore patient outcome. While current characterization relies on both histological and molecular analysis of tissue resected during surgery, there remains high variability within glioma subtypes in terms of response to treatment and outcome. In this study we hypothesized that parameters obtained from magnetic resonance data would be associated with progression-free survival for patients with recurrent low-grade glioma. The values considered were derived from the analysis of anatomic imaging, diffusion weighted imaging, and H magnetic resonance spectroscopic imaging data. Metrics obtained from diffusion and spectroscopic imaging presented strong prognostic capability within the entire population as well as when restricted to astrocytomas, but demonstrated more limited efficacy in the oligodendrogliomas. The results indicate that multi-parametric imaging data may be applied as a non-invasive means of assessing prognosis and may contribute to developing personalized treatment plans for patients with recurrent low-grade glioma.

摘要

低级别胶质瘤的病程差异很大,因此患者的预后也各不相同。虽然目前的特征描述依赖于手术切除组织的组织学和分子分析,但在胶质瘤亚型中,治疗反应和预后方面仍存在很大差异。在本研究中,我们假设从磁共振数据中获得的参数将与复发性低级别胶质瘤患者的无进展生存期相关。所考虑的值来自于对解剖成像、扩散加权成像和氢磁共振波谱成像数据的分析。从扩散和波谱成像中获得的指标在整个人群中以及仅限于星形细胞瘤时都具有很强的预后能力,但在少突胶质细胞瘤中的疗效较为有限。结果表明,多参数成像数据可作为一种评估预后的非侵入性手段,并可能有助于为复发性低级别胶质瘤患者制定个性化治疗方案。

相似文献

3

引用本文的文献

本文引用的文献

4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验