Suppr超能文献

一种使用卷积神经网络(CNN)和影像组学预测低级别胶质瘤(LGG)患者胶质瘤分级和生存情况的自动化方法。

An automated approach for predicting glioma grade and survival of LGG patients using CNN and radiomics.

作者信息

Xu Chenan, Peng Yuanyuan, Zhu Weifang, Chen Zhongyue, Li Jianrui, Tan Wenhao, Zhang Zhiqiang, Chen Xinjian

机构信息

State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China.

School of Electronics and Information Engineering and Medical Image Processing, Analysis and Visualization Lab, Soochow University, Suzhou, China.

出版信息

Front Oncol. 2022 Aug 12;12:969907. doi: 10.3389/fonc.2022.969907. eCollection 2022.

Abstract

OBJECTIVES

To develop and validate an efficient and automatically computational approach for stratifying glioma grades and predicting survival of lower-grade glioma (LGG) patients using an integration of state-of-the-art convolutional neural network (CNN) and radiomics.

METHOD

This retrospective study reviewed 470 preoperative MR images of glioma from BraTs public dataset (n=269) and Jinling hospital (n=201). A fully automated pipeline incorporating tumor segmentation and grading was developed, which can avoid variability and subjectivity of manual segmentations. First, an integrated approach by fusing CNN features and radiomics features was employed to stratify glioma grades. Then, a deep-radiomics signature based on the integrated approach for predicting survival of LGG patients was developed and subsequently validated in an independent cohort.

RESULTS

The performance of tumor segmentation achieved a Dice coefficient of 0.81. The intraclass correlation coefficients (ICCs) of the radiomics features between the segmentation network and physicians were all over 0.75. The performance of glioma grading based on integrated approach achieved the area under the curve (AUC) of 0.958, showing the effectiveness of the integrated approach. The multivariable Cox regression results demonstrated that the deep-radiomics signature remained an independent prognostic factor and the integrated nomogram showed significantly better performance than the clinical nomogram in predicting overall survival of LGG patients (C-index: 0.865 vs. 0.796, =0.005).

CONCLUSION

The proposed integrated approach can be noninvasively and efficiently applied in prediction of gliomas grade and survival. Moreover, our fully automated pipeline successfully achieved computerized segmentation instead of manual segmentation, which shows the potential to be a reproducible approach in clinical practice.

摘要

目的

开发并验证一种高效的自动计算方法,通过整合先进的卷积神经网络(CNN)和放射组学来对胶质瘤进行分级,并预测低级别胶质瘤(LGG)患者的生存情况。

方法

这项回顾性研究回顾了来自BraTs公共数据集(n = 269)和金陵医院(n = 201)的470例胶质瘤术前MR图像。开发了一种包含肿瘤分割和分级的全自动流程,可避免手动分割的变异性和主观性。首先,采用融合CNN特征和放射组学特征的综合方法对胶质瘤进行分级。然后,基于该综合方法开发了一种用于预测LGG患者生存情况的深度放射组学特征,并随后在一个独立队列中进行了验证。

结果

肿瘤分割的性能达到了0.81的Dice系数。分割网络与医生之间放射组学特征的组内相关系数(ICC)均超过0.75。基于综合方法的胶质瘤分级性能达到了0.958的曲线下面积(AUC),显示了该综合方法的有效性。多变量Cox回归结果表明,深度放射组学特征仍然是一个独立的预后因素,并且在预测LGG患者的总生存方面,综合列线图的表现明显优于临床列线图(C指数:0.865对0.796,P = 0.005)。

结论

所提出的综合方法可无创且高效地应用于胶质瘤分级和生存预测。此外,我们的全自动流程成功实现了计算机化分割而非手动分割,这表明其在临床实践中具有成为可重复方法的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/719f/9413530/8ccc380f1cd9/fonc-12-969907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验