Suppr超能文献

基于集合的心电图心拍分类判别测度。

Set-Based Discriminative Measure for Electrocardiogram Beat Classification.

机构信息

School of Instrument Science and Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China.

School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.

出版信息

Sensors (Basel). 2017 Jan 25;17(2):234. doi: 10.3390/s17020234.

Abstract

Computer aided diagnosis systems can help to reduce the high mortality rate among cardiac patients. Automatical classification of electrocardiogram (ECG) beats plays an important role in such systems, but this issue is challenging because of the complexities of ECG signals. In literature, feature designing has been broadly-studied. However, such methodology is inevitably limited by the heuristics of hand-crafting process and the challenge of signals themselves. To address it, we treat the problem of ECG beat classification from the metric and measurement perspective. We propose a novel approach, named "Set-Based Discriminative Measure", which first learns a discriminative metric space to ensure that intra-class distances are smaller than inter-class distances for ECG features in a global way, and then measures a new set-based dissimilarity in such learned space to cope with the local variation of samples. Experimental results have demonstrated the advantage of this approach in terms of effectiveness, robustness, and flexibility based on ECG beats from the MIT-BIH Arrhythmia Database.

摘要

计算机辅助诊断系统有助于降低心脏病患者的高死亡率。自动分类心电图(ECG)节拍在这类系统中起着重要作用,但由于 ECG 信号的复杂性,这一问题具有挑战性。在文献中,特征设计已经得到了广泛的研究。然而,这种方法不可避免地受到手工制作过程的启发式和信号本身的挑战的限制。为了解决这个问题,我们从度量和测量的角度来处理 ECG 节拍分类问题。我们提出了一种新的方法,称为“基于集合的判别度量”,它首先学习一个判别度量空间,以确保 ECG 特征的全局内类距离小于类间距离,然后在学习空间中测量新的基于集合的不相似性,以应对样本的局部变化。实验结果表明,基于麻省理工学院-贝斯以色列医院心律失常数据库中的 ECG 节拍,该方法在有效性、鲁棒性和灵活性方面具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb0/5335983/7fc304c9d6ab/sensors-17-00234-g001.jpg

相似文献

1
Set-Based Discriminative Measure for Electrocardiogram Beat Classification.
Sensors (Basel). 2017 Jan 25;17(2):234. doi: 10.3390/s17020234.
2
A cascaded classifier for multi-lead ECG based on feature fusion.
Comput Methods Programs Biomed. 2019 Sep;178:135-143. doi: 10.1016/j.cmpb.2019.06.021. Epub 2019 Jun 20.
3
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset.
J Healthc Eng. 2019 Oct 13;2019:6320651. doi: 10.1155/2019/6320651. eCollection 2019.
4
Online Automatic Diagnosis System of Cardiac Arrhythmias Based on MIT-BIH ECG Database.
J Healthc Eng. 2021 Dec 16;2021:1819112. doi: 10.1155/2021/1819112. eCollection 2021.
5
Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System.
Sensors (Basel). 2016 Oct 20;16(10):1744. doi: 10.3390/s16101744.
6
Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients.
Comput Methods Programs Biomed. 2012 Mar;105(3):257-67. doi: 10.1016/j.cmpb.2011.10.002. Epub 2011 Nov 3.
7
Shearlet and contourlet transforms for analysis of electrocardiogram signals.
Comput Methods Programs Biomed. 2018 Jul;161:125-132. doi: 10.1016/j.cmpb.2018.04.021. Epub 2018 Apr 26.
8
Robust Heartbeat Classification for Wearable Single-Lead ECG via Extreme Gradient Boosting.
Sensors (Basel). 2021 Aug 5;21(16):5290. doi: 10.3390/s21165290.
9
Arrhythmia Classification of ECG Signals Using Hybrid Features.
Comput Math Methods Med. 2018 Nov 12;2018:1380348. doi: 10.1155/2018/1380348. eCollection 2018.
10
Spectro-Temporal Feature Based Multi-Channel Convolutional Neural Network for ECG Beat Classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5642-5645. doi: 10.1109/EMBC.2019.8857554.

本文引用的文献

1
ECG Beats Classification Using Mixture of Features.
Int Sch Res Notices. 2014 Sep 17;2014:178436. doi: 10.1155/2014/178436. eCollection 2014.
2
High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal.
IEEE Trans Biomed Eng. 2017 Jan;64(1):78-86. doi: 10.1109/TBME.2016.2539421. Epub 2016 Mar 8.
3
Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals.
Comput Methods Programs Biomed. 2016 Apr;127:52-63. doi: 10.1016/j.cmpb.2015.12.024. Epub 2016 Jan 20.
4
ECG-based heartbeat classification for arrhythmia detection: A survey.
Comput Methods Programs Biomed. 2016 Apr;127:144-64. doi: 10.1016/j.cmpb.2015.12.008. Epub 2015 Dec 30.
5
A machine learning approach to multi-level ECG signal quality classification.
Comput Methods Programs Biomed. 2014 Dec;117(3):435-47. doi: 10.1016/j.cmpb.2014.09.002. Epub 2014 Sep 18.
7
Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases.
PLoS One. 2013 Sep 16;8(9):e73557. doi: 10.1371/journal.pone.0073557. eCollection 2013.
8
An R-peak detection method that uses an SVD filter and a search back system.
Comput Methods Programs Biomed. 2012 Dec;108(3):1121-32. doi: 10.1016/j.cmpb.2012.08.002. Epub 2012 Aug 22.
9
Classification of the electrocardiogram signals using supervised classifiers and efficient features.
Comput Methods Programs Biomed. 2010 Aug;99(2):179-94. doi: 10.1016/j.cmpb.2010.04.013. Epub 2010 May 26.
10
Block-based neural networks for personalized ECG signal classification.
IEEE Trans Neural Netw. 2007 Nov;18(6):1750-61. doi: 10.1109/TNN.2007.900239.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验