Li Lijuan, Chen Songcan, Xue Ximei, Chen Jieyin, Tian Jian, Huo Lijuan, Zhang Tuo, Zeng Xibai, Su Shiming
Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China.
Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria.
ISME Commun. 2024 Aug 20;4(1):ycae106. doi: 10.1093/ismeco/ycae106. eCollection 2024 Jan.
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
微生物通过特定的代谢途径在砷的生物地球化学循环中发挥着关键作用,以适应砷的毒性。然而,原核微生物和真核微生物之间不同的砷解毒策略却鲜为人知。这阻碍了我们对微生物与砷的相互作用如何驱动砷循环以及微生物修复方法发展的理解。在本研究中,我们利用16个砷生物转化基因(ABGs)的保守蛋白结构域在670个微生物基因组中搜索同源蛋白。原核生物中与砷还原和砷外排相关基因的物种分布比真菌更广泛,而与砷氧化相关的基因在真菌中比在原核生物中更普遍。这一点在亚砷酸盐胁迫下得到了支持,细菌中(上调3.72倍)的(亚砷酸盐外排通透酶)表达显著高于真菌(上调1.54倍),真菌中(亚砷酸氧化酶)的表达(上调5.11倍)高于细菌(上调2.05倍)。同源ABGs的非同义位点每非同义替换与同义位点每同义替换的平均值(dN/dS)在古菌(0.098)和细菌(0.124)中高于真菌(0.051)。ABGs的dN/dS与古菌、细菌和真菌的物种分布广度及基因表达水平之间存在显著负相关,表明微生物对同源ABGs建立了不同强度的纯化选择。这些差异导致了原核和真核微生物中不同的砷代谢途径。这些观察结果有助于从研究单个或几个ABGs向表征微生物砷解毒的综合策略发生重大转变。