Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States.
Institute for Nanoscale Materials Science and Engineering, University of Arkansas , Fayetteville, Arkansas 72701, United States.
Nano Lett. 2017 Mar 8;17(3):1825-1832. doi: 10.1021/acs.nanolett.6b05134. Epub 2017 Feb 2.
MoS is a promising electrode material for energy storage. However, the intrinsic multilayer pure metallic MoS (M-MoS) has not been investigated for use in supercapacitors. Here, an ultrafast rate supercapacitor with extraordinary capacitance using a multilayer M-MoS-HO system is first investigated. Intrinsic M-MoS with a monolayer of water molecules covering both sides of nanosheets is obtained through a hydrothermal method with water as solvent. The super electrical conductivity of the as-prepared pure M-MoS is beneficial to electron transport for high power supercapacitor. Meanwhile, nanochannels between the layers of M-MoS-HO with a distance of ∼1.18 nm are favorable for increasing the specific space for ion diffusion and enlarging the surface area for ion adsorption. By virtue of this, M-MoS-HO reaches a high capacitance of 380 F/g at a scan rate of 5 mV/s and still maintains 105 F/g at scan rate of 10 V/s. Furthermore, the specific capacitance of the symmetric supercapacitor based on M-MoS-HO electrodes retain a value as high as 249 F/g under 50 mV/s. These findings suggest that multilayered M-MoS-HO system with ion accessible large nanochannels and efficient charge transport provide an efficient energy storage strategy for ultrafast supercapacitors.
二硫化钼是一种很有前途的储能电极材料。然而,用于超级电容器的本征多层纯金属二硫化钼(M-MoS)尚未被研究过。在此,首次研究了使用多层 M-MoS-HO 体系的具有超高倍率超级电容器的非凡电容。通过水热法以水为溶剂,在纳米片的两侧覆盖有单层水分子的本征 M-MoS 被获得。所制备的纯 M-MoS 的超导电性有利于高功率超级电容器中的电子传输。同时,M-MoS-HO 层间的纳米通道距离为 1.18nm,有利于增加离子扩散的比表面积并扩大离子吸附的表面积。凭借这一点,M-MoS-HO 在 5mV/s 的扫描速率下达到 380F/g 的高电容,并且在 10V/s 的扫描速率下仍保持 105F/g。此外,基于 M-MoS-HO 电极的对称超级电容器的比电容在 50mV/s 下仍高达 249F/g。这些发现表明,具有可及的大纳米通道和高效电荷传输的多层 M-MoS-HO 体系为超快超级电容器提供了一种有效的储能策略。