Worku Ababay Ketema, Asfaw Alemu, Ayele Delele Worku
Bahir Dar Energy Center, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
Department of Chemistry, College of Science, Bahir Dar University, Bahir Dar, Ethiopia.
Front Chem. 2024 Apr 18;12:1357127. doi: 10.3389/fchem.2024.1357127. eCollection 2024.
Although cobalt oxides show great promise as supercapacitor electrode materials, their slow kinetics and low conductivity make them unsuitable for widespread application. We developed Ni and Cu-doped CoO nanoparticles (NPs) via a simple chemical co-precipitation method without the aid of a surfactant. The samples were analyzed for their composition, function group, band gap, structure/morphology, thermal property, surface area and electrochemical property using X-ray diffraction (XRD), ICP-OES, Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible (UV-Vis), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA) and/or Differential thermal analysis (DTA), Brunauer-Emmett-Teller (BET), and Impedance Spectroscopy (EIS), Cyclic voltammetry (CV), respectively. Notably, for the prepared sample, the addition of Cu to CoO NPs results in a 11.5-fold increase in specific surface area (573.78 m g) and a decrease in charge transfer resistance. As a result, the Ni doped CoO electrode exhibits a high specific capacitance of 749 F g, 1.75 times greater than the pristine CoO electrode's 426 F g. The electrode's enhanced surface area and electronic conductivity are credited with the significant improvement in electrochemical performance. The produced Ni doped CoO electrode has the potential to be employed in supercapacitor systems, as the obtained findings amply demonstrated.
尽管钴氧化物作为超级电容器电极材料显示出巨大的潜力,但其缓慢的动力学和低电导率使其不适用于广泛应用。我们通过一种简单的化学共沉淀方法,在不借助表面活性剂的情况下制备了镍和铜掺杂的氧化钴纳米颗粒(NPs)。使用X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-OES)、傅里叶变换红外(FTIR)光谱、紫外可见(UV-Vis)光谱、扫描电子显微镜(SEM)、热重分析(TGA)和/或差热分析(DTA)、布鲁诺尔-埃米特-泰勒(BET)比表面积测定法以及阻抗谱(EIS)、循环伏安法(CV)分别对样品的组成、官能团、带隙、结构/形态、热性能、表面积和电化学性能进行了分析。值得注意的是,对于制备的样品,向氧化钴纳米颗粒中添加铜导致比表面积增加了11.5倍(573.78 m²/g),电荷转移电阻降低。结果,镍掺杂的氧化钴电极表现出749 F/g的高比电容,是原始氧化钴电极426 F/g的1.75倍。电极增强的表面积和电子电导率归功于其电化学性能的显著改善。如所获得的结果充分证明的那样,所制备的镍掺杂氧化钴电极有潜力应用于超级电容器系统。