Suppr超能文献

基于定量表观扩散系数测量的扩散加权磁共振成像在鉴别高级别与低级别脑胶质瘤中的应用:一项荟萃分析的证据

The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: Evidence from a meta-analysis.

作者信息

Zhang Li, Min Zhiqian, Tang Min, Chen Sipan, Lei Xiaoyan, Zhang Xiaoling

机构信息

The Department of MRI, Shaanxi Provincial People's hospital, Beilin District, Xi'an City 710000,Shaanxi Province, China.

The Department of MRI, Shaanxi Provincial People's hospital, Beilin District, Xi'an City 710000,Shaanxi Province, China.

出版信息

J Neurol Sci. 2017 Feb 15;373:9-15. doi: 10.1016/j.jns.2016.12.008. Epub 2016 Dec 9.

Abstract

OBJECTIVE

The aim of this meta-analysis was to predict the grades of cerebral gliomas using quantitative apparent diffusion coefficient (ADC) values.

MATERIALS AND METHODS

A comprehensive search of the PubMed, EMBASE, Web of Science, and Cochrane Library databases was performed up to 8, 2016. The quality assessment of diagnostic accuracy studies (QUADAS 2) was used to evaluate the quality of studies. Statistical analyses included pooling of sensitivity and specificity, positive likelihood ratio (PLR), negative likelihood ratio' (NLR), diagnostic odds ratio (DOR), and diagnostic accuracy values of the included studies using the summary receiver operating characteristic (SROC). All analyses were conducted using STATA (version 12.0), RevMan (version 5.3), and Meta-Disc 1.4 software programs.

RESULTS

Fifteen studies were analyzed and included a total of 821 patients and 821 lesions. In regards to the diagnostic accuracy of ADC maps, the pooled SEN, SPE, PLR, NLR, and DOR with 95%CIs were 0.82 [95%CI: 0.76, 0.87] and 0.75 [95%CI: 0.67, 0.81], 3.24 [95%CI: 2.48, 4.24], 0.24 [95%CI: 0.17, 0.33], and 13.60 [95%CI: 8.37, 22.07], respectively. The SROC curve showed an AUC of 0.85. Deeks testing confirmed no significant publication bias in all studies.

CONCLUSION

Our findings indicate that quantitative ADC values have high accuracy in separating high-grade from low-grade cerebral gliomas. Further studies using a standardized methodology may help guide the use of ADC values for clinical decision-making.

摘要

目的

本荟萃分析的目的是使用定量表观扩散系数(ADC)值预测脑胶质瘤的分级。

材料与方法

截至2016年8月,对PubMed、EMBASE、科学网和考克兰图书馆数据库进行了全面检索。使用诊断准确性研究的质量评估(QUADAS 2)来评估研究质量。统计分析包括使用汇总受试者工作特征(SROC)汇总纳入研究的敏感性和特异性、阳性似然比(PLR)、阴性似然比(NLR)、诊断比值比(DOR)和诊断准确性值。所有分析均使用STATA(版本12.0)、RevMan(版本5.3)和Meta-Disc 1.4软件程序进行。

结果

分析了15项研究,共纳入821例患者和821个病灶。关于ADC图的诊断准确性,汇总的敏感性、特异性、PLR、NLR和DOR及其95%置信区间分别为0.82 [95%CI:0.76,0.87]和0.75 [95%CI:0.67,0.81]、3.24 [95%CI:2.48,4.24]、0.24 [95%CI:0.17,0.33]和13.60 [95%CI:8.37,22.07]。SROC曲线显示曲线下面积(AUC)为0.85。Deeks检验证实所有研究中均无显著的发表偏倚。

结论

我们的研究结果表明,定量ADC值在区分高级别和低级别脑胶质瘤方面具有较高的准确性。采用标准化方法的进一步研究可能有助于指导将ADC值用于临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验