Suppr超能文献

用于半参数图估计的加速路径跟踪迭代收缩阈值算法

Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation.

作者信息

Zhao Tuo, Liu Han

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA;

Department of Operations Research Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA;

出版信息

J Comput Graph Stat. 2016;25(4):1272-1296. doi: 10.1080/10618600.2016.1164533. Epub 2016 Nov 10.

Abstract

We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory.

摘要

我们提出了一种加速的路径跟踪迭代收缩阈值算法(APISTA),用于解决高维稀疏非凸学习问题。APISTA与路径跟踪迭代收缩阈值算法(PISTA)的主要区别在于,APISTA利用了一个额外的坐标下降子程序来提高计算性能。这种修改虽然简单,但却有深远的影响:APISTA不仅享有与PISTA相同的理论保证,即APISTA能以线性收敛速度收敛到具有良好统计特性的唯一稀疏局部最优解,而且在实证基准测试中显著优于PISTA。作为一个应用,我们将APISTA应用于解决一类由估计稀疏半参数图形模型引发的非凸优化问题。APISTA使我们能够获得现有文献中不存在的新的统计恢复结果。我们提供了详尽的数值结果来支持我们的理论。

相似文献

1
Accelerated Path-following Iterative Shrinkage Thresholding Algorithm with Application to Semiparametric Graph Estimation.
J Comput Graph Stat. 2016;25(4):1272-1296. doi: 10.1080/10618600.2016.1164533. Epub 2016 Nov 10.
4
Improved iterative shrinkage-thresholding for sparse signal recovery via Laplace mixtures models.
EURASIP J Adv Signal Process. 2018;2018(1):46. doi: 10.1186/s13634-018-0565-5. Epub 2018 Jul 13.
5
Stochastic Recursive Gradient Support Pursuit and Its Sparse Representation Applications.
Sensors (Basel). 2020 Aug 30;20(17):4902. doi: 10.3390/s20174902.
6
7
I-LAMM FOR SPARSE LEARNING: SIMULTANEOUS CONTROL OF ALGORITHMIC COMPLEXITY AND STATISTICAL ERROR.
Ann Stat. 2018 Apr;46(2):814-841. doi: 10.1214/17-AOS1568. Epub 2018 Apr 3.
8
A proximal distance algorithm for likelihood-based sparse covariance estimation.
Biometrika. 2022 Dec;109(4):1047-1066. doi: 10.1093/biomet/asac011. Epub 2022 Feb 16.
9
L1/2 regularization: a thresholding representation theory and a fast solver.
IEEE Trans Neural Netw Learn Syst. 2012 Jul;23(7):1013-27. doi: 10.1109/TNNLS.2012.2197412.
10
Positive Semidefinite Rank-based Correlation Matrix Estimation with Application to Semiparametric Graph Estimation.
J Comput Graph Stat. 2014 Oct 20;23(4):895-922. doi: 10.1080/10618600.2013.858633.

本文引用的文献

2
Statistical analysis of latent generalized correlation matrix estimation in transelliptical distribution.
Bernoulli (Andover). 2017 Feb;23(1):23-57. doi: 10.3150/15-BEJ702. Epub 2016 Sep 27.
5
Fast and Adaptive Sparse Precision Matrix Estimation in High Dimensions.
J Multivar Anal. 2015 Mar 1;135:153-162. doi: 10.1016/j.jmva.2014.11.005.
6
Calibrated Precision Matrix Estimation for High-Dimensional Elliptical Distributions.
IEEE Trans Inf Theory. 2014 Dec;60(12):7874-7887. doi: 10.1109/TIT.2014.2360980.
7
Sparse Covariance Matrix Estimation With Eigenvalue Constraints.
J Comput Graph Stat. 2014 Apr;23(2):439-459. doi: 10.1080/10618600.2013.782818.
8
Accelerated Mini-batch Randomized Block Coordinate Descent Method.
Adv Neural Inf Process Syst. 2014 Dec;27:5614.
9
STRONG ORACLE OPTIMALITY OF FOLDED CONCAVE PENALIZED ESTIMATION.
Ann Stat. 2014 Jun;42(3):819-849. doi: 10.1214/13-aos1198.
10
: Coordinate Descent With Nonconvex Penalties.
J Am Stat Assoc. 2011;106(495):1125-1138. doi: 10.1198/jasa.2011.tm09738.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验