Zhao Tuo, Liu Han
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA;
Department of Operations Research Research and Financial Engineering, Princeton University, Princeton, NJ 08544, USA;
J Comput Graph Stat. 2016;25(4):1272-1296. doi: 10.1080/10618600.2016.1164533. Epub 2016 Nov 10.
We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory.
我们提出了一种加速的路径跟踪迭代收缩阈值算法(APISTA),用于解决高维稀疏非凸学习问题。APISTA与路径跟踪迭代收缩阈值算法(PISTA)的主要区别在于,APISTA利用了一个额外的坐标下降子程序来提高计算性能。这种修改虽然简单,但却有深远的影响:APISTA不仅享有与PISTA相同的理论保证,即APISTA能以线性收敛速度收敛到具有良好统计特性的唯一稀疏局部最优解,而且在实证基准测试中显著优于PISTA。作为一个应用,我们将APISTA应用于解决一类由估计稀疏半参数图形模型引发的非凸优化问题。APISTA使我们能够获得现有文献中不存在的新的统计恢复结果。我们提供了详尽的数值结果来支持我们的理论。