Suppr超能文献

用于R中高维线性回归和精度矩阵估计的flare软件包。

The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R.

作者信息

Li Xingguo, Zhao Tuo, Yuan Xiaoming, Liu Han

机构信息

Department of Electrical and Computer Engineering, University of Minnesota Twin Cities.

Department of Computer Science, Johns Hopkins University.

出版信息

J Mach Learn Res. 2015 Mar;16:553-557.

Abstract

This paper describes an R package named flare, which implements a family of new high dimensional regression methods (LAD Lasso, SQRT Lasso, ℓ Lasso, and Dantzig selector) and their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods exploit different nonsmooth loss functions to gain modeling exibility, estimation robustness, and tuning insensitiveness. The developed solver is based on the alternating direction method of multipliers (ADMM), which is further accelerated by the multistage screening approach. The package flare is coded in double precision C, and called from R by a user-friendly interface. The memory usage is optimized by using the sparse matrix output. The experiments show that flare is efficient and can scale up to large problems.

摘要

本文介绍了一个名为flare的R包,它实现了一系列新的高维回归方法(LAD Lasso、SQRT Lasso、ℓ Lasso和丹齐格选择器)及其对稀疏精度矩阵估计的扩展(TIGER和CLIME)。这些方法利用不同的非光滑损失函数来获得建模灵活性、估计稳健性和调优不敏感性。所开发的求解器基于乘子交替方向法(ADMM),并通过多阶段筛选方法进一步加速。包flare用双精度C编码,并通过用户友好的接口从R调用。通过使用稀疏矩阵输出优化了内存使用。实验表明,flare是高效的,并且可以扩展到大型问题。

相似文献

3
Algorithms for Fitting the Constrained Lasso.用于拟合约束套索的算法
J Comput Graph Stat. 2018;27(4):861-871. doi: 10.1080/10618600.2018.1473777. Epub 2018 Aug 7.
8
Accelerated Variance Reduction Stochastic ADMM for Large-Scale Machine Learning.用于大规模机器学习的加速方差缩减随机交替方向乘子法
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4242-4255. doi: 10.1109/TPAMI.2020.3000512. Epub 2021 Nov 3.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验