Zhao Tuo, Roeder Kathryn, Liu Han
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA;
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
J Comput Graph Stat. 2014 Oct 20;23(4):895-922. doi: 10.1080/10618600.2013.858633.
Many statistical methods gain robustness and flexibility by sacrificing convenient computational structures. In this paper, we illustrate this fundamental tradeoff by studying a semi-parametric graph estimation problem in high dimensions. We explain how novel computational techniques help to solve this type of problem. In particular, we propose a nonparanormal neighborhood pursuit algorithm to estimate high dimensional semiparametric graphical models with theoretical guarantees. Moreover, we provide an alternative view to analyze the tradeoff between computational efficiency and statistical error under a smoothing optimization framework. Though this paper focuses on the problem of graph estimation, the proposed methodology is widely applicable to other problems with similar structures. We also report thorough experimental results on text, stock, and genomic datasets.
许多统计方法通过牺牲便捷的计算结构来获得稳健性和灵活性。在本文中,我们通过研究高维半参数图估计问题来说明这种基本的权衡。我们解释了新颖的计算技术如何有助于解决这类问题。特别地,我们提出了一种非正态邻域追踪算法,以在理论保证下估计高维半参数图模型。此外,我们提供了一种在平滑优化框架下分析计算效率和统计误差之间权衡的替代观点。尽管本文专注于图估计问题,但所提出的方法广泛适用于具有类似结构的其他问题。我们还报告了在文本、股票和基因组数据集上的详尽实验结果。