Suppr超能文献

基于手势交互的图像分割方法在手势识别中的应用

An Interactive Image Segmentation Method in Hand Gesture Recognition.

机构信息

School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China.

School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK.

出版信息

Sensors (Basel). 2017 Jan 27;17(2):253. doi: 10.3390/s17020253.

Abstract

In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy.

摘要

为了提高手势识别的识别率,提出了一种新的用于手势识别的交互式图像分割方法,并研究了流行的方法,例如图割、随机游走、基于测地星形凸性的交互式图像分割。本文采用高斯混合模型进行图像建模,通过期望最大化算法的迭代来学习高斯混合模型的参数。我们将 Gibbs 随机场应用于图像分割,并使用最小割定理最小化 Gibbs 能量,以找到最佳分割。通过估计区域精度和边界精度,在图像数据集上测试了我们的方法的分割结果,并与其他方法进行了比较。最后,在我们的实验平台上测试了五种不同背景下的手势,使用稀疏表示算法,证明了对手势图像的分割有助于提高识别精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9bb/5336094/3623b2747638/sensors-17-00253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验