Suppr超能文献

完成纹理地形网格中的完整场景重建和地形分类。

Complete scene recovery and terrain classification in textured terrain meshes.

机构信息

Department of Multimedia Engineering, Dongguk University-Seoul, 26 Pildosng 3 Ga, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2012;12(8):11221-37. doi: 10.3390/s120811221. Epub 2012 Aug 13.

Abstract

Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh.

摘要

地形分类允许移动机器人根据其传感器阵列(包括 GPS 接收器、陀螺仪、摄像机和距离传感器)收集的三维(3D)和二维(2D)数据集,创建其局部环境的带注释地图。然而,距离传感器测量范围之外的物体部分将不会被检测到。为了克服这个问题,本文描述了一种用于完整场景恢复和完整地形重建的边缘估计方法。在这里,使用 Gibbs-Markov 随机场对 2D 视频和 3D 点云进行地面分割。此外,还提出了一种掩蔽方法,用于对地形网格中的建筑物和树木进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d463/3472881/78c429f98b9e/sensors-12-11221f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验