Suppr超能文献

随机游走方法的随机图像分割。

Segmentation of stochastic images with a stochastic random walker method.

机构信息

School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.

出版信息

IEEE Trans Image Process. 2012 May;21(5):2424-33. doi: 10.1109/TIP.2012.2187531. Epub 2012 Feb 10.

Abstract

We present an extension of the random walker segmentation to images with uncertain gray values. Such gray-value uncertainty may result from noise or other imaging artifacts or more general from measurement errors in the image acquisition process. The purpose is to quantify the influence of the gray-value uncertainty onto the result when using random walker segmentation. In random walker segmentation, a weighted graph is built from the image, where the edge weights depend on the image gradient between the pixels. For given seed regions, the probability is evaluated for a random walk on this graph starting at a pixel to end in one of the seed regions. Here, we extend this method to images with uncertain gray values. To this end, we consider the pixel values to be random variables (RVs), thus introducing the notion of stochastic images. We end up with stochastic weights for the graph in random walker segmentation and a stochastic partial differential equation (PDE) that has to be solved. We discretize the RVs and the stochastic PDE by the method of generalized polynomial chaos, combining the recent developments in numerical methods for the discretization of stochastic PDEs and an interactive segmentation algorithm. The resulting algorithm allows for the detection of regions where the segmentation result is highly influenced by the uncertain pixel values. Thus, it gives a reliability estimate for the resulting segmentation, and it furthermore allows determining the probability density function of the segmented object volume.

摘要

我们提出了一种将随机游走分割扩展到灰度值不确定的图像的方法。这种灰度值不确定性可能是由于噪声或其他成像伪影引起的,或者更普遍地是由于图像获取过程中的测量误差引起的。目的是量化在使用随机游走分割时灰度值不确定性对结果的影响。在随机游走分割中,从图像构建加权图,其中边的权重取决于像素之间的图像梯度。对于给定的种子区域,评估从该图上的一个像素开始并在一个种子区域中结束的随机游走的概率。在这里,我们将这种方法扩展到灰度值不确定的图像。为此,我们将像素值视为随机变量 (RV),从而引入了随机图像的概念。我们最终得到了随机游走分割中图形的随机权重和必须求解的随机偏微分方程 (PDE)。我们通过广义多项式混沌方法对 RV 和随机 PDE 进行离散化,该方法结合了用于离散随机 PDE 的数值方法的最新进展和交互式分割算法。所得到的算法允许检测分割结果受不确定像素值强烈影响的区域。因此,它为得到的分割提供了可靠性估计,并且它还允许确定分割对象体积的概率密度函数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验