Kandhasamy Chandrasekaran, Ghosh Kaushik
Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
Spat Spatiotemporal Epidemiol. 2017 Feb;20:27-34. doi: 10.1016/j.sste.2017.01.001. Epub 2017 Jan 5.
Indian states are currently classified into HIV-risk categories based on the observed prevalence counts, percentage of infected attendees in antenatal clinics, and percentage of infected high-risk individuals. This method, however, does not account for the spatial dependence among the states nor does it provide any measure of statistical uncertainty. We provide an alternative model-based approach to address these issues. Our method uses Poisson log-normal models having various conditional autoregressive structures with neighborhood-based and distance-based weight matrices and incorporates all available covariate information. We use R and WinBugs software to fit these models to the 2011 HIV data. Based on the Deviance Information Criterion, the convolution model using distance-based weight matrix and covariate information on female sex workers, literacy rate and intravenous drug users is found to have the best fit. The relative risk of HIV for the various states is estimated using the best model and the states are then classified into the risk categories based on these estimated values. An HIV risk map of India is constructed based on these results. The choice of the final model suggests that an HIV control strategy which focuses on the female sex workers, intravenous drug users and literacy rate would be most effective.
印度各邦目前是根据观察到的流行病例数、产前诊所中受感染就诊者的百分比以及高危个体中受感染个体的百分比来划分艾滋病病毒风险类别的。然而,这种方法没有考虑各邦之间的空间依赖性,也没有提供任何统计不确定性的度量。我们提供了一种基于模型的替代方法来解决这些问题。我们的方法使用具有各种条件自回归结构的泊松对数正态模型,这些模型带有基于邻域和基于距离的权重矩阵,并纳入了所有可用的协变量信息。我们使用R和WinBugs软件将这些模型应用于2011年的艾滋病病毒数据。基于偏差信息准则,发现使用基于距离的权重矩阵以及女性性工作者、识字率和静脉吸毒者的协变量信息的卷积模型拟合效果最佳。使用最佳模型估计各邦艾滋病病毒的相对风险,然后根据这些估计值将各邦划分为风险类别。基于这些结果构建了印度的艾滋病病毒风险地图。最终模型的选择表明,侧重于女性性工作者、静脉吸毒者和识字率的艾滋病病毒控制策略将最为有效。