Lee Duncan
School of Mathematics and Statistics, University Gardens, University of Glasgow, Glasgow G12 8QW, United Kingdom.
Spat Spatiotemporal Epidemiol. 2011 Jun;2(2):79-89. doi: 10.1016/j.sste.2011.03.001. Epub 2011 Mar 12.
Disease mapping is the area of epidemiology that estimates the spatial pattern in disease risk over an extended geographical region, so that areas with elevated risk levels can be identified. Bayesian hierarchical models are typically used in this context, which represent the risk surface using a combination of available covariate data and a set of spatial random effects. These random effects are included to model any overdispersion or spatial correlation in the disease data, that has not been accounted for by the available covariate information. The random effects are typically modelled by a conditional autoregressive (CAR) prior distribution, and a number of alternative specifications have been proposed. This paper critiques four of the most common models within the CAR class, and assesses their appropriateness via a simulation study. The four models are then applied to a new study mapping cancer incidence in Greater Glasgow, Scotland, between 2001 and 2005.
疾病制图是流行病学的一个领域,它估计在一个广阔地理区域内疾病风险的空间模式,以便能够识别出风险水平升高的区域。贝叶斯分层模型通常在此背景下使用,它通过结合可用的协变量数据和一组空间随机效应来表示风险表面。纳入这些随机效应是为了对疾病数据中未被可用协变量信息所解释的任何过度分散或空间相关性进行建模。随机效应通常由条件自回归(CAR)先验分布建模,并且已经提出了许多替代规范。本文对CAR类中最常见的四个模型进行了批判,并通过模拟研究评估了它们的适用性。然后将这四个模型应用于一项新的研究,该研究绘制了2001年至2005年间苏格兰大格拉斯哥地区的癌症发病率地图。