Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Glycobiology. 2017 Jun 1;27(6):536-554. doi: 10.1093/glycob/cwx012.
Class I hyaluronan synthases (HAS) assemble [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP at the reducing end and also make chitin. Streptococcus equisimilis HAS (SeHAS) also synthesizes chitin-UDP oligosaccharides, (GlcNAc-β1,4)n-GlcNAc(α1→)UDP (Weigel et al. 2015). Here we determined if HAS uses chitin-UDPs as primers to initiate HA synthesis, leaving the non-HA primer at the nonreducing (NR) end. HA made by SeHAS membranes was purified, digested with streptomyces lyase, and hydrophobic oligomers were enriched by solid phase extraction and analyzed by MALDI-TOF MS. Jack bean hexosaminidase (JBH) and MS/MS were used to analyze 19 m/z species of possible GnHn ions with clustered GlcNAc (G) residues attached to disaccharide units (H): (GlcNAcβ1,4)2-5[GlcUA(β1,3)GlcNAc]2-6. JBH digestion sequentially removed GlcNAc from the NR-end of GnHn oligomers, producing successively smaller GnH2-3 series members. Since lyase releases dehydro-oligos (dHn; M-18), only the unique NR-end oligo lacks dehydro-GlcUA. Hn oligomers were undetectable in lyase digests, whereas JBH treatment created new H2-6m/z peaks (i.e. HA tetra- through dodeca-oligomers). MS/MS of larger GnHn species produced chitin (2-5 GlcNAcs), HA oligomers and multiple smaller series members with fewer GlcNAcs. All NR-ends (97%) started with GlcNAc, as a chitin trimer (three GlcNAcs), indicating that GlcNAc(β1,4)2GlcNAc(α1→)-UDP may be optimal for initiation of HA synthesis. Also, HA made by live S. pyogenes cells had G4Hn chitin-oligo NR-ends. We conclude that chitin-UDP functions in vitro and in live cells as a primer to initiate synthesis of all HA chains and these primers remain at the NR-ends of HA chains as residual chitin caps [(GlcNAc-β1,4)3-4].
I 类透明质酸合酶(HAS)在还原端组装 [GlcNAc(β1,4)GlcUA(β1,3)]n-UDP,同时还合成几丁质。马链球菌 HAS(SeHAS)也合成几丁质-UDP 寡糖,(GlcNAc-β1,4)n-GlcNAc(α1→)UDP(Weigel 等人,2015 年)。在这里,我们确定 HAS 是否使用几丁质-UDP 作为引物来启动 HA 合成,而将非 HA 引物留在非还原(NR)端。用 SeHAS 膜合成的 HA 被纯化,用链霉菌裂解酶消化,并用固相萃取富集疏水性寡聚物,并通过 MALDI-TOF MS 分析。用刀豆球蛋白 hexosaminidase (JBH) 和 MS/MS 分析了可能的 GnHn 离子的 19 m/z 种,这些离子带有簇状 GlcNAc(G)残基连接到二糖单元(H)上:(GlcNAcβ1,4)2-5[GlcUA(β1,3)GlcNAc]2-6。JBH 消化依次从 GnHn 寡聚物的 NR 端去除 GlcNAc,产生大小依次减小的 GnH2-3 系列成员。由于裂解酶释放脱氢寡糖(dHn;M-18),只有独特的 NR 端寡糖缺乏脱氢 GlcUA。在裂解酶消化物中无法检测到 Hn 寡糖,而 JBH 处理则产生了新的 H2-6m/z 峰(即 HA 四聚体至十二聚体)。较大 GnHn 物种的 MS/MS 产生了几丁质(2-5 个 GlcNAc)、HA 寡糖和多个 GlcNAc 较少的较小系列成员。所有 NR 端(97%)都以 GlcNAc 开头,作为一个三糖(三个 GlcNAc),表明 GlcNAc(β1,4)2GlcNAc(α1→)-UDP 可能是 HA 合成起始的最佳选择。此外,活 S. pyogenes 细胞合成的 HA 具有 G4Hn 几丁质寡糖 NR 端。我们得出结论,几丁质-UDP 在体外和活细胞中作为引物发挥作用,启动所有 HA 链的合成,这些引物作为残留的几丁质帽留在 HA 链的 NR 端[(GlcNAc-β1,4)3-4]。