Suppr超能文献

谷氨酰胺核糖开关对L-谷氨酰胺低亲和力、高选择性结合的结构与动力学基础

Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch.

作者信息

Ren Aiming, Xue Yi, Peselis Alla, Serganov Alexander, Al-Hashimi Hashim M, Patel Dinshaw J

机构信息

Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.

Department of Biochemistry and Chemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Cell Rep. 2015 Dec 1;13(9):1800-13. doi: 10.1016/j.celrep.2015.10.062. Epub 2015 Nov 19.

Abstract

Naturally occurring L-glutamine riboswitches occur in cyanobacteria and marine metagenomes, where they reside upstream of genes involved in nitrogen metabolism. By combining X-ray, NMR, and MD, we characterized an L-glutamine-dependent conformational transition in the Synechococcus elongatus glutamine riboswitch from tuning fork to L-shaped alignment of stem segments. This transition generates an open ligand-binding pocket with L-glutamine selectivity enforced by Mg(2+)-mediated intermolecular interactions. The transition also stabilizes the P1 helix through a long-range "linchpin" Watson-Crick G-C pair-capping interaction, while melting a short helix below P1 potentially capable of modulating downstream readout. NMR data establish that the ligand-free glutamine riboswitch in Mg(2+) solution exists in a slow equilibrium between flexible tuning fork and a minor conformation, similar, but not identical, to the L-shaped bound conformation. We propose that an open ligand-binding pocket combined with a high conformational penalty for forming the ligand-bound state provide mechanisms for reducing binding affinity while retaining high selectivity.

摘要

天然存在的L-谷氨酰胺核糖开关存在于蓝细菌和海洋宏基因组中,它们位于参与氮代谢的基因上游。通过结合X射线、核磁共振(NMR)和分子动力学(MD),我们表征了聚球藻属(Synechococcus elongatus)谷氨酰胺核糖开关中依赖L-谷氨酰胺的构象转变,即从音叉结构转变为茎段的L形排列。这种转变产生了一个开放的配体结合口袋,Mg(2+)介导的分子间相互作用增强了对L-谷氨酰胺的选择性。该转变还通过远距离的“关键”沃森-克里克G-C碱基对封端相互作用稳定了P1螺旋,同时使P1下方的一个短螺旋解链,这可能能够调节下游的读出。核磁共振数据表明,Mg(2+)溶液中无配体的谷氨酰胺核糖开关在灵活的音叉结构和一种次要构象之间存在缓慢平衡,这种次要构象与L形结合构象相似但不相同。我们提出,一个开放的配体结合口袋与形成配体结合状态时的高构象代价相结合,为降低结合亲和力同时保持高选择性提供了机制。

相似文献

1
Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch.
Cell Rep. 2015 Dec 1;13(9):1800-13. doi: 10.1016/j.celrep.2015.10.062. Epub 2015 Nov 19.
2
Structure and ligand binding of the glutamine-II riboswitch.
Nucleic Acids Res. 2019 Aug 22;47(14):7666-7675. doi: 10.1093/nar/gkz539.
3
Bacterial aptamers that selectively bind glutamine.
RNA Biol. 2011 Jan-Feb;8(1):82-9. doi: 10.4161/rna.8.1.13864. Epub 2011 Jan 1.
4
Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition.
Nucleic Acids Res. 2021 Jul 9;49(12):7139-7153. doi: 10.1093/nar/gkab486.
5
Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
J Biomol Struct Dyn. 2011 Oct;29(2):403-16. doi: 10.1080/07391102.2011.10507394.
7
SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation.
Biomolecules. 2024 Jun 23;14(7):742. doi: 10.3390/biom14070742.
8
Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
Nucleic Acids Res. 2007;35(15):5262-73. doi: 10.1093/nar/gkm565. Epub 2007 Aug 7.
9
Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy.
Nucleic Acids Res. 2011 Aug;39(15):6802-12. doi: 10.1093/nar/gkr238. Epub 2011 May 16.

引用本文的文献

1
Comprehensive datasets for RNA design, machine learning, and beyond.
Sci Rep. 2025 Jul 1;15(1):21417. doi: 10.1038/s41598-025-07041-2.
2
A Cyanobacteria-Derived RNA Aptamer Resensitizes Prostate Cancer to Hormone Therapy.
Cancer Res. 2025 Jul 15;85(14):2714-2725. doi: 10.1158/0008-5472.CAN-24-4039.
3
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
Res Sq. 2025 Mar 26:rs.3.rs-5664139. doi: 10.21203/rs.3.rs-5664139/v1.
4
All-at-once RNA folding with 3D motif prediction framed by evolutionary information.
bioRxiv. 2024 Dec 20:2024.12.17.628809. doi: 10.1101/2024.12.17.628809.
5
Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch.
Int J Mol Sci. 2024 Oct 20;25(20):11288. doi: 10.3390/ijms252011288.
6
Riboswitch Mechanisms for Regulation of P1 Helix Stability.
Int J Mol Sci. 2024 Oct 4;25(19):10682. doi: 10.3390/ijms251910682.
7
Structural mechanisms for binding and activation of a contact-quenched fluorophore by RhoBAST.
Nat Commun. 2024 May 17;15(1):4206. doi: 10.1038/s41467-024-48478-9.
8
Advances in chaperone-assisted RNA crystallography using synthetic antibodies.
BBA Adv. 2023 Aug 19;4:100101. doi: 10.1016/j.bbadva.2023.100101. eCollection 2023.
9
Native Top-Down Mass Spectrometry Uncovers Two Distinct Binding Motifs of a Functional Neomycin-Sensing Riboswitch Aptamer.
J Am Chem Soc. 2023 Jul 19;145(28):15284-15294. doi: 10.1021/jacs.3c02774. Epub 2023 Jul 7.
10
Riboswitches, from cognition to transformation.
Synth Syst Biotechnol. 2023 Jun 3;8(3):357-370. doi: 10.1016/j.synbio.2023.05.008. eCollection 2023 Sep.

本文引用的文献

1
An RNA tertiary switch by modifying how helices are tethered.
Genome Biol. 2014 Jul 30;15(7):425. doi: 10.1186/s13059-014-0425-z.
3
The structural basis of transfer RNA mimicry and conformational plasticity by a viral RNA.
Nature. 2014 Jul 17;511(7509):366-9. doi: 10.1038/nature13378. Epub 2014 Jun 8.
4
Global analysis of riboswitches by small-angle X-ray scattering and calorimetry.
Biochim Biophys Acta. 2014 Oct;1839(10):1020-1029. doi: 10.1016/j.bbagrm.2014.04.014. Epub 2014 Apr 24.
5
A decade of riboswitches.
Cell. 2013 Jan 17;152(1-2):17-24. doi: 10.1016/j.cell.2012.12.024.
6
Metabolite recognition principles and molecular mechanisms underlying riboswitch function.
Annu Rev Biophys. 2012;41:343-70. doi: 10.1146/annurev-biophys-101211-113224.
7
Functional complexity and regulation through RNA dynamics.
Nature. 2012 Feb 15;482(7385):322-30. doi: 10.1038/nature10885.
8
Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy.
Nucleic Acids Res. 2012 Apr;40(7):3117-30. doi: 10.1093/nar/gkr1154. Epub 2011 Dec 1.
9
Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy.
Nat Methods. 2011 Oct 28;8(11):919-31. doi: 10.1038/nmeth.1735.
10
3D maps of RNA interhelical junctions.
Nat Protoc. 2011 Sep 15;6(10):1536-45. doi: 10.1038/nprot.2011.385.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验