Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
Sci Adv. 2016 Nov 18;2(11):e1600225. doi: 10.1126/sciadv.1600225. eCollection 2016 Nov.
The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase.
亚稳材料的空间为下一代技术材料(如复杂氧化物、半导体、药物、钢等)提供了有前景的新设计机会。尽管亚稳相在自然界和技术中无处不在,但对其潜在热力学的理解仅仅是一种启发式的理解。我们报告了对 Materials Project 的一项大规模数据挖掘研究,该项目是一个高通量数据库,包含密度泛函理论计算的无机晶体结构数据库结构的能量学,以明确量化 29,902 种观察到的无机晶态相的亚稳性热力学标度。我们揭示了化学和组成对多晶型和分相化合物可及的晶态亚稳性热力学范围的影响,得出了新的物理见解,可以指导新型亚稳材料的设计。我们进一步断言,并非所有低能量亚稳化合物都一定可以合成,并提出了“残余亚稳性”原则——可观察到的亚稳晶相通常是它们曾经是最低自由能相的热力学条件的残余物。