Sun Wenhao, Jayaraman Saivenkataraman, Chen Wei, Persson Kristin A, Ceder Gerbrand
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and.
Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3199-204. doi: 10.1073/pnas.1423898112. Epub 2015 Mar 4.
Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing "calcite-aragonite problem"--the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite--which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg:Ca [corrected] ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.
预测化合物从溶液中结晶时形成亚稳结构的条件,是材料合成中一个尚未解决的基本问题。如果能够理解并利用这一问题,就可以合理设计通向或远离亚稳结构的合成途径。通过基于低温溶液的途径,如温和化学法和水热合成法,特别容易实现亚稳相的结晶。然而,尽管溶液化学在决定形成哪种多晶型物方面起着关键作用,但人们对其具体作用方式却知之甚少。在这里,我们展示了一种从头算技术,用于量化与水环境处于平衡状态的表面和体相的热力学参数,从而能够计算竞争多晶型物的成核势垒作为溶液化学的函数,进而预测控制多晶型物选择的溶液条件。我们应用这种方法解决了长期存在的“方解石 - 文石问题”——即在海洋环境中碳酸钙沉淀为亚稳的文石多晶型物,而不是稳定相方解石——这一问题与生物矿化、碳封存、古地球化学以及海洋生物对海洋酸化的脆弱性密切相关。我们确定了方解石表面能与溶液中镁钙[校正后]离子浓度之间的直接关系,表明在镁钙比与现代海水一致的溶液中,方解石的成核势垒超过了亚稳文石的成核势垒,使得文石在成核动力学中占主导地位。我们量化溶液参数如何区分多晶型物的能力,标志着朝着从头算预测溶液中材料合成途径迈出了重要一步。